73 research outputs found

    Attenuation of pollution arising from acid mine drainage by a natural wetland on the Witwatersrand

    Get PDF
    Wetlands are well known to be efficient at sequestering pollutants from contaminated water. We investigated metal accumulation in the peats of the Klip River, a natural wetland that has received contaminated water from gold mining operations in Johannesburg for over 130 years. Previous work conducted in the downstream portion identified the wetland as an important system for sequestering metals. We focused on the upstream section of the wetland, more proximal to the source of acid mine drainage, to provide a better understanding of the pollutant sources and the role of the wetland in pollutant attenuation. Geochemical and mineralogical analyses of peat cores revealed considerable metal enrichments in the peat ash, particularly in Co, Ni, Zn, Pb, Cu and U. Metal concentrations are typically between 4 to 8 times higher than those previously reported for the downstream, more distal portion of the wetland. The distribution of metal accumulation within the peat profiles suggests that contamination arises from a combination of sources and processes. Elevated concentrations in the shallow peat are attributed to the input of contaminated surface water via tributaries that drain the Central Rand Goldfield, whereas enrichments in the deeper peat suggest significant sub-surface inflow of contaminated water through the underlying dolomitic rocks. Metal immobilisation occurs through a combination of mechanisms, which include the precipitation of gypsum, metal sulfides, Fe-Mn oxyhydroxides and phosphates. Our study highlights the environmental and economic importance of natural wetland systems which have the ability to accumulate large quantities of metals and thus remediate polluted waters.EM201

    Health Status of Adult Montanans in Supported and Semi-Independent Living Arrangements

    Get PDF
    This study reports on the prevalence and severity of secondary conditions in adults with developmental disabilities living in 33 Montana counties. Secondary conditions are additional health problems acquired by an individual with a disability. Although the personal, social, and financial costs of these secondary conditions are extraordinarily high, they are frequently preventable. Ten of the top twelve secondary conditions reported by survey respondents involved issues that can be addressed by wellness activities or lifestyle management. In particular, survey ratings of “Communication,” “Weight,” and “Physical Fitness” problems suggest that these areas may contribute to other problems. Efforts to improve communication skills, nutrition, and fitness might prevent, or reduce the severity, of many other reported secondary conditions. Data suggesting that more than half of respondents are overweight and that a quarter of these are obese are particularly disturbing. Worthy goals for this population would be to increase exercise and fitness, improve nutrition, and reduce the prevalence of obesity

    Common genetic determinants of lung function, subclinical atherosclerosis and risk of coronary artery disease

    Get PDF
    Chronic obstructive pulmonary disease (COPD) independently associates with an increased risk of coronary artery disease (CAD), but it has not been fully investigated whether this co-morbidity involves shared pathophysiological mechanisms. To identify potential common pathways across the two diseases, we tested all recently published single nucleotide polymorphisms (SNPs) associated with human lung function (spirometry) for association with carotid intima-media thickness (cIMT) in 3,378 subjects with multiple CAD risk factors, and for association with CAD in a case-control study of 5,775 CAD cases and 7,265 controls. SNPs rs2865531, located in the CFDP1 gene, and rs9978142, located in the KCNE2 gene, were significantly associated with CAD. In addition, SNP rs9978142 and SNP rs3995090 located in the HTR4 gene, were associated with average and maximal cIMT measures. Genetic risk scores combining the most robustly spirometry-associated SNPs from the literature were modestly associated with CAD, (odds ratio (OR) (95% confidence interval (CI95) = 1.06 (1.03, 1.09); P-value = 1.5Ă—10-4, per allele). In conclusion, our study suggests that some genetic loci implicated in determining human lung function also influence cIMT and susceptibility to CAD. The present results should help elucidate the molecular underpinnings of the co-morbidity observed across COPD and CAD

    Diving into the vertical dimension of elasmobranch movement ecology

    Get PDF
    Knowledge of the three-dimensional movement patterns of elasmobranchs is vital to understand their ecological roles and exposure to anthropogenic pressures. To date, comparative studies among species at global scales have mostly focused on horizontal movements. Our study addresses the knowledge gap of vertical movements by compiling the first global synthesis of vertical habitat use by elasmobranchs from data obtained by deployment of 989 biotelemetry tags on 38 elasmobranch species. Elasmobranchs displayed high intra- and interspecific variability in vertical movement patterns. Substantial vertical overlap was observed for many epipelagic elasmobranchs, indicating an increased likelihood to display spatial overlap, biologically interact, and share similar risk to anthropogenic threats that vary on a vertical gradient. We highlight the critical next steps toward incorporating vertical movement into global management and monitoring strategies for elasmobranchs, emphasizing the need to address geographic and taxonomic biases in deployments and to concurrently consider both horizontal and vertical movements

    Palaeoenvironments during a terminal Oligocene or early Miocene transgression in a fluvial system at the southwestern tip of Africa

    Full text link

    A generalized Michaelis-Menten type equation for the analysis of growth

    No full text
    The functional form W = (W0Kc Wf t(c)) /(Kc t(c)), where W is body size at age t, W0 and Wf are the zero- and infinite-time values of W, respectively, and K and c are constants, is derived. This new generalized Michaelis-Menten-type equation provides a flexible model for animal growth capable of describing sigmoidal and diminishing returns behavior. The parameters of the nonlinear model are open to biological interpretation and can be used to calculate reliable estimates of growth traits, such as maximum or average postnatal growth rates. To evaluate the new model, the derived equation and standard growth functions such as the Gompertz and Richards were used to fit 83 growth data sets of different animal species (fish, mice, hamsters, rats, guinea pigs, rabbits, cats, dogs, broilers, turkeys, sheep, goats, pigs, horses, and cattle) with a large range in body size. A comparative study was carried out based on mathematical, statistical, and biological characteristics of the models. The statistical goodness-of-fit achieved with the new model was similar to that of Richards, and both were slightly superior to the Gompertz. The new model differed from the others with respect to some of the estimated growth traits, but there were highly significant correlation coefficients between estimates obtained with the different models, and the ranking of animals based on growth parameters computed with the new function agreed with the rankings computed by the other models. Therefore, the new model, with its variable inflection point, was able to adequately describe growth in a wide variety of animals, to fit a range of data showing sigmoidal growth patterns, and to provide satisfactory estimates of traits for quantifying the growth characteristics of each type of animal
    • …
    corecore