99 research outputs found
A rapid transition from ice covered CO2–rich waters to a biologically mediated CO2 sink in the eastern Weddell Gyre
Circumpolar Deep Water (CDW), locally called Warm Deep Water (WDW), enters the Weddell Gyre in the southeast, roughly at 25° E to 30° E. In December 2002 and January 2003 we studied the effect of entrainment of WDW on the fugacity of carbon dioxide (fCO2) and dissolved inorganic carbon (DIC) in Weddell Sea surface waters. Ultimately the fCO2 difference across the sea surface drives air-sea fluxes of CO2. Deep CTD sections and surface transects of fCO2 were made along the Prime Meridian, a northwest-southeast section, and along 17° E to 23° E during cruise ANT XX/2 on FS Polarstern. Upward movement and entrainment of WDW into the winter mixed layer had significantly increased DIC and fCO2 below the sea ice along 0° W and 17° E to 23° E, notably in the southern Weddell Gyre. Nonetheless, the ice cover largely prevented outgassing of CO2 to the atmosphere. During and upon melting of the ice, biological activity rapidly reduced surface water fCO2 by up to 100 µatm, thus creating a sink for atmospheric CO2. Despite the tendency of the surfacing WDW to cause CO2 supersaturation, the Weddell Gyre may well be a CO2 sink on an annual basis due to this effective mechanism involving ice cover and ensuing biological fCO2 reduction. Dissolution of calcium carbonate (CaCO3) in melting sea ice may play a minor role in this rapid reduction of surface water fCO2
Neodymium isotopic composition and concentration in the western North Atlantic Ocean: results from the GEOTRACES GA02 section
The neodymium (Nd) isotopic composition of seawater is commonly used as a proxy to study past changes in the thermohaline circulation. The modern database for such reconstructions is however poor and the understanding of the underlying processes is incomplete. Here we present new observational data for Nd isotopes and concentrations from twelve seawater depth profiles, which follow the flow path of North Atlantic Deep Water (NADW) from its formation region in the North Atlantic to the northern equatorial Atlantic. Samples were collected during two cruises constituting the northern part of the Dutch GEOTRACES transect GA02 in 2010. The results show that the different water masses in the subpolar North Atlantic Ocean, which ultimately constitute NADW, have the following Nd isotope characteristics: Upper Labrador Sea Water (ULSW), εNd = -14.2 ± 0.3; Labrador Sea Water (LSW), εNd = -13.7 ± 0.9; Northeast Atlantic Deep Water (NEADW), εNd = -12.5 ± 0.6; Northwest Atlantic Bottom Water (NWABW), εNd = -11.8 ± 1.4. In the subtropics, where these source water masses have mixed to form NADW, which is exported to the global ocean, upper-NADW is characterised by εNd values of -13.2 ± 1.0 (2sd) and lower-NADW exhibits values of εNd = -12.4 ± 0.4 (2sd). While both signatures overlap within error, the signature for lower-NADW is significantly more radiogenic than the traditionally used value for NADW (εNd = -13.5) due to the dominance of source waters from the Nordic Seas (NWABW and NEADW). Comparison between the concentration profiles and the corresponding Nd isotope profiles with other water mass properties such as salinity, silicate concentrations, neutral densities and chlorofluorocarbon (CFC) concentration provides novel insights into the geochemical cycle of Nd and reveals that different processes are necessary to account for the observed Nd characteristics in the subpolar and subtropical gyres and throughout the vertical water column. While our data set provides additional insights into the contribution of boundary exchange in areas of sediment resuspension, the results for open ocean seawater demonstrate, at an unprecedented level, the suitability of Nd isotopes to trace modern water masses in the strongly advecting western Atlantic Ocean
Iron, silicate, and light co-limitation of three Southern Ocean diatom species
The effect of combined iron, silicate, and light co-limitation was investigated in the three diatom species Actinocyclus sp. Ehrenberg, Chaetoceros dichaeta Ehrenberg, and Chaetoceros debilis Cleve, isolated from the Southern Ocean (SO). Growth of all species was co-limited by iron and silicate, reflected in a significant increase in the number of cell divisions compared to the control. Lowest relative Si uptake and drastic frustule malformation was found under iron and silicate co-limitation in C. dichaeta, while Si limitation in general caused cell elongation in both Chaetoceros species. Higher light intensities similar to SO surface conditions showed a negative impact on growth of C. dichaeta and Actinocyclus sp. and no effect on C. debilis. This is in contrast to the assumed light limitation of SO diatoms due to deep wind driven mixing. Our results suggest that growth and species composition of Southern Ocean diatoms is influenced by a sensitive interaction of the abiotic factors, iron, silicate, and light
Bioavailable iron in the Southern Ocean: the significance of the iceberg conveyor belt
Productivity in the Southern Oceans is iron-limited, and the supply of iron dissolved from aeolian dust is believed to be the main source from outside the marine reservoir. Glacial sediment sources of iron have rarely been considered, as the iron has been assumed to be inert and non-bioavailable. This study demonstrates the presence of potentially bioavailable Fe as ferrihydrite and goethite in nanoparticulate clusters, in sediments collected from icebergs in the Southern Ocean and glaciers on the Antarctic landmass. Nanoparticles in ice can be transported by icebergs away from coastal regions in the Southern Ocean, enabling melting to release bioavailable Fe to the open ocean. The abundance of nanoparticulate iron has been measured by an ascorbate extraction. This data indicates that the fluxes of bioavailable iron supplied to the Southern Ocean from aeolian dust (0.01–0.13 Tg yr-1) and icebergs (0.06–0.12 Tg yr-1) are comparable. Increases in iceberg production thus have the capacity to increase productivity and this newly identified negative feedback may help to mitigate fossil fuel emissions
Return of naturally sourced Pb to Atlantic surface waters
Anthropogenic emissions completely overwhelmed natural marine lead (Pb) sources during the past century, predominantly due to leaded petrol usage. Here, based on Pb isotope measurements, we reassess the importance of natural and anthropogenic Pb sources to the tropical North Atlantic following the nearly complete global cessation of leaded petrol use. Significant proportions of up to 30-50% of natural Pb, derived from mineral dust, are observed in Atlantic surface waters, reflecting the success of the global effort to reduce anthropogenic Pb emissions. The observation of mineral dust derived Pb in surface waters is governed by the elevated atmospheric mineral dust concentration of the North African dust plume and the dominance of dry deposition for the atmospheric aerosol flux to surface waters. Given these specific regional conditions, emissions from anthropogenic activities will remain the dominant global marine Pb source, even in the absence of leaded petrol combustion
Processes and patterns of oceanic nutrient limitation
Microbial activity is a fundamental component of oceanic nutrient cycles. Photosynthetic microbes, collectively termed phytoplankton, are responsible for the vast majority of primary production in marine waters. The availability of nutrients in the upper ocean frequently limits the activity and abundance of these organisms. Experimental data have revealed two broad regimes of phytoplankton nutrient limitation in the modern upper ocean. Nitrogen availability tends to limit productivity throughout much of the surface low-latitude ocean, where the supply of nutrients from the subsurface is relatively slow. In contrast, iron often limits productivity where subsurface nutrient supply is enhanced, including within the main oceanic upwelling regions of the Southern Ocean and the eastern equatorial Pacific. Phosphorus, vitamins and micronutrients other than iron may also (co-)limit marine phytoplankton. The spatial patterns and importance of co-limitation, however, remain unclear. Variability in the stoichiometries of nutrient supply and biological demand are key determinants of oceanic nutrient limitation. Deciphering the mechanisms that underpin this variability, and the consequences for marine microbes, will be a challenge. But such knowledge will be crucial for accurately predicting the consequences of ongoing anthropogenic perturbations to oceanic nutrient biogeochemistry. © 2013 Macmillan Publishers Limited. All rights reserved
Harmful Elements in Estuarine and Coastal Systems
Estuaries and coastal zones are dynamic transitional systems which provide many economic and ecological benefits to humans, but also are an ideal habitat for other organisms as well. These areas are becoming contaminated by various anthropogenic activities due to a quick economic growth and urbanization. This chapter explores the sources, chemical speciation, sediment accumulation and removal mechanisms of the harmful elements in estuarine and coastal seawaters. It also describes the effects of toxic elements on aquatic flora and fauna. Finally, the toxic element pollution of the Venice Lagoon, a transitional water body located in the northeastern part of Italy, is discussed as a case study, by presenting the procedures adopted to measure the extent of the pollution, the impacts on organisms and the restoration activities
Zinc-bicarbonate colimitation of Emiliania huxleyi
In analogy to the Fe hypothesis, the Zn hypothesis states that Zn may limit primary production in some regions of the world oceans and therefore influence the global carbon cycle. The proposed mechanism is via carbon limitation due to a lack of the cofactor Zn in carbonic anhydrase. In the current conceptual model for the use of inorganic carbon by E. huxleyi, carbonic anhydrase in the chloroplast generates CO2 from HCO3- at the site where CO2 is fixed by ribulose bisphosphate carboxylase oxygenase (Rubisco). The H+ that is required in this reaction comes from calcification. From this it can be expected that carbonic anhydrase affects the use of HCO3- in photo-synthesis. First, we grew E. huxleyi under Zn2+ limitation. The K1/2 for growth of E. huxleyi is 19 ± 8 pmol L-1 Zn2+ with a minimum requirement of 9 ± 3 pmol L-1. Additions of both ethylenediaminetetraacetic acid (EDTA) and ZnCl2 show that EDTA is not detrimental to E. huxleyi up to a concentration of 200 µmol L-1. Then we grew E. huxleyi under Zn2+-HCO3- colimitation to test the conceptual model outlined above. The results were partly inconsistent with the model. Contrary to what was expected from the conceptual model, the efficiency of CO2 use decreased when both Zn2+ and HCO3- concentrations were low, even though the experiment was conducted at a constant high concentration of CO2. This shows that Zn2+, and possibly carbonic anhydrase activity, are needed for CO2 fixation also. In accordance with the model, we found that Zn2+ affects the efficiency of HCO3- use by E. huxleyi. Since the lowest Zn2+ concentration in the Northeast Pacific is ~0.4 pmol L-1, Zn limitation of E. huxleyi growth may indeed occur.
Micrometeorologie van lucht/zee fluxen van CO2 en dimethylsulfide
Abstract niet beschikbaarThe sea to air flux of CO2 and the biogenic volatile sulfur compound dimethylsulphide were assessed with the Relaxed Eddy Accumulation (REA) and the Gradient Flux techniques from stationary and moving platforms in the Atlantic and Pacific Oceans during the FAIRS and GasEx cruise. The correlation between the techniques was good, with REA on average higher than GF. Fluxes derived from micrometeorological measurements agreed within error bars with those obtained by the conventional equations as proposed by Liss and Merlivat (1986), Wanninkhof (1992), and Jacobs (1999). The relationships between the transfer velocity and wind speed based on the micrometeorological measurements agreed within 10% and were on average higher than the equation proposed by Wanninkhof (1992). The effect of temperature on the computed sea to air flux of CO2 were investigated on a micrometeorological scale as well as on a small scale (top few metres of the watercolumn). The definition of skin temperature relies on a known bulk temperature of the water, which is shown to be not only highly stratified in the thermal structure but also very resilient versus disturbances, being wind speed. The skin temperature models, which were derived from open ocean work, are not directly applicable to coastal seas. As the skin temperature and the thermal structure is so rigid under the various wind conditions the gas exchange coefficients, derived from windtunnel experiments under the assumption of a well mixed layer are now under scrutiny.SG-NO
- …