176 research outputs found

    Vision-based real-time position control of a semi-automated system for robot-assisted joint fracture surgery

    Get PDF
    Purpose: Joint fracture surgery quality can be improved by robotic system with high-accuracy and high-repeatability fracture fragment manipulation. A new real-time vision-based system for fragment manipulation during robot-assisted fracture surgery was developed and tested. Methods: The control strategy was accomplished by merging fast open-loop control with vision-based control. This two-phase process is designed to eliminate the open-loop positioning errors by closing the control loop using visual feedback provided by an optical tracking system. Evaluation of the control system accuracy was performed using robot positioning trials, and fracture reduction accuracy was tested in trials on ex vivo porcine model.Results: The system resulted in high fracture reduction reliability with a reduction accuracy of 0.09mm (translations) and of (Formula presented.) (rotations), maximum observed errors in the order of 0.12mm (translations) and of (Formula presented.) (rotations), and a reduction repeatability of 0.02mm and (Formula presented.). Conclusions: The proposed vision-based system was shown to be effective and suitable for real joint fracture surgical procedures, contributing a potential improvement of their quality

    Evolutionary History and Population Dynamics of Hepatitis E Virus

    Get PDF
    BACKGROUND: Hepatitis E virus (HEV) is an enterically transmitted hepatropic virus. It segregates as four genotypes. All genotypes infect humans while only genotypes 3 and 4 also infect several animal species. It has been suggested that hepatitis E is zoonotic, but no study has analyzed the evolutionary history of HEV. We present here an analysis of the evolutionary history of HEV. METHODS AND FINDINGS: The times to the most recent common ancestors for all four genotypes of HEV were calculated using BEAST to conduct a Bayesian analysis of HEV. The population dynamics for genotypes 1, 3 and 4 were analyzed using skyline plots. Bayesian analysis showed that the most recent common ancestor for modern HEV existed between 536 and 1344 years ago. The progenitor of HEV appears to have given rise to anthropotropic and enzootic forms of HEV, which evolved into genotypes 1 and 2 and genotypes 3 and 4, respectively. Population dynamics suggest that genotypes 1, 3 and 4 experienced a population expansion during the 20(th) century. Genotype 1 has increased in infected population size ∼30-35 years ago. Genotype 3 and 4 have experienced an increase in population size starting late in the 19(th) century until ca.1940-45, with genotype 3 having undergone additional rapid expansion until ca.1960. The effective population size for both genotype 3 and 4 rapidly declined to pre-expansion levels starting in ca.1990. Genotype 4 was further examined as Chinese and Japanese sequences, which exhibited different population dynamics, suggesting that this genotype experienced different evolutionary history in these two countries. CONCLUSIONS: HEV appears to have evolved through a series of steps, in which the ancestors of HEV may have adapted to a succession of animal hosts leading to humans. Analysis of the population dynamics of HEV suggests a substantial temporal variation in the rate of transmission among HEV genotypes in different geographic regions late in the 20(th) Century

    Optimization of xylanase production by filamentous fungi in solid state fermentation and scale-up to horizontal tube bioreactor

    Get PDF
    Five microorganisms, namely Aspergillus niger CECT 2700, A. niger CECT 2915, A. niger CECT 2088, Aspergillus terreus CECT 2808, and Rhizopus stolonifer CECT 2344, were grown on corncob to produce cell wall polysaccharide-degrading enzymes, mainly xylanases, by solid-state fermentation (SSF). A. niger CECT 2700 produced the highest amount of xylanases of 504±7 U/g dry corncob (dcc) after 3 days of fermentation. The optimization of the culture broth (5.0 g/L NaNO3, 1.3 g/L (NH4)2SO4, 4.5 g/L KH2PO4, and 3 g/L yeast extract) and operational conditions (5 g of bed loading, using an initial substrate to moistening medium of 1:3.6 (w/v)) allowed increasing the predicted maximal xylanase activity up to 2,452.7 U/g dcc. However, different pretreatments of materials, including destarching, autoclaving, microwave, and alkaline treatments, were detrimental. Finally, the process was successfully established in a laboratory-scale horizontal tube biore- actor, achieving the highest xylanase activity (2,926 U/g dcc) at a flow rate of 0.2 L/min. The result showed an overall 5.8-fold increase in xylanase activity after optimization of culture media, operational conditions, and scale-up.We are grateful to the Spanish Ministry of Science and Innovation for the financial support of this work (project CTQ2011-28967), which has partial financial support from the FEDER funds of the European Union; to the Leonardo da Vinci Programme for founding the stay of Felisbela Oliveira in Vigo University; to MAEC-AECID (Spanish Government) for the financial support for Perez-Bibbins, B. and to Spanish Ministry of Education, Culture and Sports for Perez-Rodriguez's FPU; and to Solla E. and Mendez J. (CACTI-University of Vigo) for their excellent technical assistance in microscopy

    Identification of B Cell Epitopes of Alcohol Dehydrogenase Allergen of Curvularia lunata

    Get PDF
    BACKGROUND/OBJECTIVE: Epitope identification assists in developing molecules for clinical applications and is useful in defining molecular features of allergens for understanding structure/function relationship. The present study was aimed to identify the B cell epitopes of alcohol dehydrogenase (ADH) allergen from Curvularia lunata using in-silico methods and immunoassay. METHOD: B cell epitopes of ADH were predicted by sequence and structure based methods and protein-protein interaction tools while T cell epitopes by inhibitory concentration and binding score methods. The epitopes were superimposed on a three dimensional model of ADH generated by homology modeling and analyzed for antigenic characteristics. Peptides corresponding to predicted epitopes were synthesized and immunoreactivity assessed by ELISA using individual and pooled patients' sera. RESULT: The homology model showed GroES like catalytic domain joined to Rossmann superfamily domain by an alpha helix. Stereochemical quality was confirmed by Procheck which showed 90% residues in most favorable region of Ramachandran plot while Errat gave a quality score of 92.733%. Six B cell (P1-P6) and four T cell (P7-P10) epitopes were predicted by a combination of methods. Peptide P2 (epitope P2) showed E(X)(2)GGP(X)(3)KKI conserved pattern among allergens of pathogenesis related family. It was predicted as high affinity binder based on electronegativity and low hydrophobicity. The computational methods employed were validated using Bet v 1 and Der p 2 allergens where 67% and 60% of the epitope residues were predicted correctly. Among B cell epitopes, Peptide P2 showed maximum IgE binding with individual and pooled patients' sera (mean OD 0.604±0.059 and 0.506±0.0035, respectively) followed by P1, P4 and P3 epitopes. All T cell epitopes showed lower IgE binding. CONCLUSION: Four B cell epitopes of C. lunata ADH were identified. Peptide P2 can serve as a potential candidate for diagnosis of allergic diseases

    Current Advances in Internet of Underground Things

    Get PDF
    The latest developments in Internet of Underground Things are covered in this chapter. First, the IOUT Architecture is discussed followed by the explanation of the challenges being faced in this paradigm. Moreover, a comprehensive coverage of the different IOUT components is presented that includes communications, sensing, and system integration with the cloud. An in-depth coverage of the applications of the IOUT in various disciplines is also surveyed. These applications include areas such as decision agriculture, pipeline monitoring, border control, and oil wells

    Evaluating genetic markers and neurobiochemical analytes for fluoxetine response using a panel of mouse inbred strains

    Get PDF
    RationaleIdentification of biomarkers that establish diagnosis or treatment response is critical to the advancement of research and management of patients with depression.ObjectiveOur goal was to identify biomarkers that can potentially assess fluoxetine response and risk to poor treatment outcome.MethodsWe measured behavior, gene expression, and the levels of 36 neurobiochemical analytes across a panel of genetically diverse mouse inbred lines after chronic treatment with water or fluoxetine.ResultsGlyoxylase 1 (GLO1) and guanine nucleotide-binding protein 1 (GNB1) mostly account for baseline anxiety-like and depressive-like behavior, indicating a common biological link between depression and anxiety. Fluoxetine-induced biochemical alterations discriminated positive responders, while baseline neurobiochemical differences differentiated negative responders (p < 0.006). Results show that glial fibrillary acidic protein, S100 beta protein, GLO1, and histone deacetylase 5 contributed most to fluoxetine response. These proteins are linked within a cellular growth/proliferation pathway, suggesting the involvement of cellular genesis in fluoxetine response. Furthermore, a candidate genetic locus that associates with baseline depressive-like behavior contains a gene that encodes for cellular proliferation/adhesion molecule (Cadm1), supporting a genetic basis for the role of neuro/gliogenesis in depression.ConclusionWe provided a comprehensive analysis of behavioral, neurobiochemical, and transcriptome data across 30 mouse inbred strains that has not been accomplished before. We identified biomarkers that influence fluoxetine response, which, altogether, implicate the importance of cellular genesis in fluoxetine treatment. More broadly, this approach can be used to assess a wide range of drug response phenotypes that are challenging to address in human samples.Electronic supplementary materialThe online version of this article (doi:10.1007/s00213-011-2574-z) contains supplementary material, which is available to authorized users

    Turner syndrome and sexual differentiation of the brain: implications for understanding male-biased neurodevelopmental disorders

    Get PDF
    Turner syndrome (TS) is one of the most common sex chromosome abnormalities. Affected individuals often show a unique pattern of cognitive strengths and weaknesses and are at increased risk for a number of other neurodevelopmental conditions, many of which are more common in typical males than typical females (e.g., autism and attention-deficit hyperactivity disorder). This phenotype may reflect gonadal steroid deficiency, haploinsufficiency of X chromosome genes, failure to express parentally imprinted genes, and the uncovering of X chromosome mutations. Understanding the contribution of these different mechanisms to outcome has the potential to improve clinical care for individuals with TS and to better our understanding of the differential vulnerability to and expression of neurodevelopmental disorders in males and females. In this paper, we review what is currently known about cognition and brain development in individuals with TS, discuss underlying mechanisms and their relevance to understanding male-biased neurodevelopmental conditions, and suggest directions for future research

    Smoking prevalence and attributable disease burden in 195 countries and territories, 1990-2015 : a systematic analysis from the Global Burden of Disease Study 2015

    Get PDF
    Background The scale-up of tobacco control, especially after the adoption of the Framework Convention for Tobacco Control, is a major public health success story. Nonetheless, smoking remains a leading risk for early death and disability worldwide, and therefore continues to require sustained political commitment. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) offers a robust platform through which global, regional, and national progress toward achieving smoking-related targets can be assessed. Methods We synthesised 2818 data sources with spatiotemporal Gaussian process regression and produced estimates of daily smoking prevalence by sex, age group, and year for 195 countries and territories from 1990 to 2015. We analysed 38 risk-outcome pairs to generate estimates of smoking-attributable mortality and disease burden, as measured by disability-adjusted life-years (DALYs). We then performed a cohort analysis of smoking prevalence by birth-year cohort to better understand temporal age patterns in smoking. We also did a decomposition analysis, in which we parsed out changes in all-cause smoking-attributable DALYs due to changes in population growth, population ageing, smoking prevalence, and risk-deleted DALY rates. Finally, we explored results by level of development using the Socio-demographic Index (SDI). Findings Worldwide, the age-standardised prevalence of daily smoking was 25.0% (95% uncertainty interval [UI] 24.2-25.7) for men and 5.4% (5.1-5.7) for women, representing 28.4% (25.8-31.1) and 34.4% (29.4-38.6) reductions, respectively, since 1990. A greater percentage of countries and territories achieved significant annualised rates of decline in smoking prevalence from 1990 to 2005 than in between 2005 and 2015; however, only four countries had significant annualised increases in smoking prevalence between 2005 and 2015 (Congo [Brazzaville] and Azerbaijan for men and Kuwait and Timor-Leste for women). In 2015, 11.5% of global deaths (6.4 million [95% UI 5.7-7.0 million]) were attributable to smoking worldwide, of which 52.2% took place in four countries (China, India, the USA, and Russia). Smoking was ranked among the five leading risk factors by DALYs in 109 countries and territories in 2015, rising from 88 geographies in 1990. In terms of birth cohorts, male smoking prevalence followed similar age patterns across levels of SDI, whereas much more heterogeneity was found in age patterns for female smokers by level of development. While smoking prevalence and risk-deleted DALY rates mostly decreased by sex and SDI quintile, population growth, population ageing, or a combination of both, drove rises in overall smoking-attributable DALYs in low-SDI to middle-SDI geographies between 2005 and 2015. Interpretation The pace of progress in reducing smoking prevalence has been heterogeneous across geographies, development status, and sex, and as highlighted by more recent trends, maintaining past rates of decline should not be taken for granted, especially in women and in low-SDI to middle-SDI countries. Beyond the effect of the tobacco industry and societal mores, a crucial challenge facing tobacco control initiatives is that demographic forces are poised to heighten smoking's global toll, unless progress in preventing initiation and promoting cessation can be substantially accelerated. Greater success in tobacco control is possible but requires effective, comprehensive, and adequately implemented and enforced policies, which might in turn require global and national levels of political commitment beyond what has been achieved during the past 25 years.Peer reviewe

    Signals in the Soil: An Introduction to Wireless Underground Communications

    Get PDF
    In this chapter, wireless underground (UG) communications are introduced. A detailed overview of WUC is given. A comprehensive review of research challenges in WUC is presented. The evolution of underground wireless is also discussed. Moreover, different component of UG communications is wireless. The WUC system architecture is explained with a detailed discussion of the anatomy of an underground mote. The examples of UG wireless communication systems are explored. Furthermore, the differences of UG wireless and over-the-air wireless are debated. Different types of wireless underground channel (e.g., In-Soil, Soil-to-Air, and Air-to-Soil) are reported as well

    Endocrinologic, neurologic, and visual morbidity after treatment for craniopharyngioma

    Get PDF
    Craniopharyngiomas are locally aggressive tumors which typically are focused in the sellar and suprasellar region near a number of critical neural and vascular structures mediating endocrinologic, behavioral, and visual functions. The present study aims to summarize and compare the published literature regarding morbidity resulting from treatment of craniopharyngioma. We performed a comprehensive search of the published English language literature to identify studies publishing outcome data of patients undergoing surgery for craniopharyngioma. Comparisons of the rates of endocrine, vascular, neurological, and visual complications were performed using Pearson’s chi-squared test, and covariates of interest were fitted into a multivariate logistic regression model. In our data set, 540 patients underwent surgical resection of their tumor. 138 patients received biopsy alone followed by some form of radiotherapy. Mean overall follow-up for all patients in these studies was 54 ± 1.8 months. The overall rate of new endocrinopathy for all patients undergoing surgical resection of their mass was 37% (95% CI = 33–41). Patients receiving GTR had over 2.5 times the rate of developing at least one endocrinopathy compared to patients receiving STR alone or STR + XRT (52 vs. 19 vs. 20%, χ2P < 0.00001). On multivariate analysis, GTR conferred a significant increase in the risk of endocrinopathy compared to STR + XRT (OR = 3.45, 95% CI = 2.05–5.81, P < 0.00001), after controlling for study size and the presence of significant hypothalamic involvement. There was a statistical trend towards worse visual outcomes in patients receiving XRT after STR compared to GTR or STR alone (GTR = 3.5% vs. STR 2.1% vs. STR + XRT 6.4%, P = 0.11). Given the difficulty in obtaining class 1 data regarding the treatment of this tumor, this study can serve as an estimate of expected outcomes for these patients, and guide decision making until these data are available
    corecore