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Chapter 1 
Signals in the Soil: An Introduction to Wireless
Underground Communications 

Abstract In this chapter, wireless underground (ug) communications are introduced. 
A detailed overview of WUC is given. A comprehensive review of research challenges 
in WUC is presented. The evolution of underground wireless is also discussed. 
Moreover, di˙erent component of the of UG communications are Wireless. The 
WUC system architecture is explained with a detailed discussion of the anatomy 
of an underground mote. The examples of ug wireless communication systems are 
explored. Furthermore, the di˙erences of UG Wireless and Over-the-Air Wireless are 
debated. Di˙erent types of wireless underground Channel (e.g., In-Soil, Soil-to-Air, 
and Air-to-Soil) are reported as well. 

1.1 Introduction 

Wireless Underground Communication (WUC) is becoming popular because of it’s 
secured deployment methodology, i.e., concealed far below the ground. Underground 
communication was frst observed in World War, however, its use was limited to radio 
propagation techniques only. V. Fritsch and R. Wundt conducted the experiments, 
in 1938-1940, to study the propagation of radio waves in underground coal mines 
using small transceivers deployed below the ground. Although, the communication 
range varied depending upon the nature of the coal, however, they were successfully 
able to achieve an overall range of upto 1000 feet. In 1942, they conducted another 
experiment at the depth of 2000 feet, however, the experiments were conducted 
in 100 feet thick salt mine instead of coal mine. For the salt mine experiment, a 
battery operated horizontal dipole antenna was used as transmitter and receiver. They 
performed voice communication using the amplitude modulation. The experiment 
was performed with extreme care and intelligence to avoid extraneous noise or any 
other added radio signals at transmitter. It was made sure that no measurable wave 
existed on the earth surface so that true underground propagation can be studied. 
Moreover, transmitter and receiver were separated by a carefully planned distance. A 
range of 15 km, i.e., 9-1/2 miles, was successfully achieved for voice communication. 
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Fig. 1.1: Organization of the Chapter 

Since then, underground communication has come long way with improvement in 
methodologies and equipment. This Chapter discusses the potential and challenges 
of underground communication. 

Smart Farming [9, 50, 52, 56, 58, 62, 72, 75, 100, 104, 145, 155] is an agricultural 
management process which exploits the spatio-temporal changes in crop, soil,
management and production with new technologies to improve the farming experience. 
Smart farming employs large number of wireless devices to sense crop-related data 
and send this data to a central control room or server center [32, 71]. In recent years, 
sensing technologies have evolved a lot. These advanced sensing methods are then 
combined with adaptive input applications (e.g., adaptive application of fertilizers) 
and soil mapping methods for eÿcient operation. 

In recent years, evolution and advancement in sensing technologies have risen the 
demand of high data rates and increased communication range. As per the reports of 
Cisco’s visual networking index [1], 11.6 billion devices are predicted to be connected 
via Internet by 2020. The vastness of this number can be realized by the fact that 
population of the world is predicted to be 10 billion by 2050, i.e., even less than the 
predicted number of connected devices by 2020. To fulfll food requirement of such a 
huge population of the world, it is imperative to utilize smart farming methodologies 
for a better and cost-eÿcient crop production through timely decision making and 
conserving natural resources. To that end, it is important to achieve an ubiquitous 
connectivity on the farms by using underground wireless communications channel 
[53, 71, 72]. 

Wireless Underground Communications (WUC) applications can be classifed into 
various categories [28, 38, 46]. Some of them, for example, includes: environment 
monitoring, e.g., precision agriculture and landslide monitoring, infrastructure 
monitoring, e.g., preventing leakage and urban infrastructure monitoring, application 
for determining location can be helpful in locating people stuck in disaster, and
security monitoring applications, e.g., to detect infltration at border through concealed 
underground devices. Fig. 1.2 shows some of these applications [27]. 

WUC and conventional wireless networks di˙ers mainly in the communication 
medium they use. WUC sensor nodes communicate through soil where as over-the-air 
(OTA) terrestrial wireless network uses air as a medium to communicate. The signal 
propagation in soil is never investigated properly before, in fact, electromagnetic (EM) 
wave propagation was not even considered a viable option for underground (UG) 
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Fig. 1.2: Use of Wireless Underground Communications (WUC) in di˙erent areas 

communication. Therefore, feasible options and solutions are explored to develop a 
power-eÿcient UG communications. 

There is a lack of detailed wireless channel model because of the challenges 
experienced in developing a power-eÿcient UG communication system which also 
hinders the protocol development in WUC. To that end, existing literature was studied 
in detail along with a very detailed and time-intensive experiments [57, 59, 60, 70, 206]. 
The results from these experiments were analyzed over a period of 18 months to 
generalize performance of an UG communication channel. A summary of those 
results can be found in [210]. It was observed that many soil parameters (e.g., soil 
texture and moisture and irregular soil surface), and antenna parameters (burial 
depth, antenna design, and operating frequency) has e˙ect on UG communication. 
It substantiate the fact that performance of an underground channel can highly be 
e˙ected by the spatio-temporal environmental factors leading to a unique correlation 
of communication systems, i.e., both information data and communication medium, 
with environment. Hence, in addition to operational and deployment factors, these 
parameters should also not be overlooked while analyzing an underground channel. 

A wireless underground communications (WUC) model has been developed and 
presented in [210]. The model focuses on propagation model rather than antenna 
problem. This WUC model determines the total signal attenuation and the BER 
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Fig. 1.3: The di˙erent types of networking in (WUC) [260] 

(bit error rate) using three-wave components (direct wave (DW), refected wave 
(RW), and lateral wave (LW)), dielectric soil properties prediction model, and the 
signal superposition model. In contrast to existing literature, WUC model captures 
the gain from the directivity of special antennas instead of simple insulated dipole 
[51, 52]. However, to avoid over-complication of the model, antennas problem are 
not considered in this model because of a large number of antennas schemes. 

[210] conducted in-situ experiments without considering lateral wave component. 
However, if lateral waves are also considered along with special antennas, 
communication range can be increased with same transmitting power. The results 
obtained from the study helped in designing WUC systems. A strong multi-hop 
networking solution among the buried nodes can be achieved with long range (distance 
> 10 m) eliminating the topology dependency of above-ground devices. 

In [210], authors have also shown that depth has high e˙ect on communication 
performance. Through empirical evaluations, they observed that even a small change in 
depth can degrade the communication performance. The di˙erence in communication 
performance between topsoil and subsoil is because of: 

• Soil parameters. Both, topsoil, and subsoil, have di˙erent soil texture and soil 
moisture levels [15] which is the reason for the di˙erence in communication in 
both mediums [1, 1, 59]. For example, topsoil will have more soil moisture level 
as compared to subsoil during rain or irrigation because it takes time for water to 
reach subsoil area [66]. 

• Soil surface e˙ects. LW and RW component plays an important role in high 
signal strength in topsoil region. Therefore, signal propagating through topsoil 
experiences much less attenuation as compared to the subsoil region. 

It is preferred to have a shallow deployment of UG nodes in WUC because of 
shorter propagation path in the soil causing signal to su˙er less attenuation. However, 
the depth is highly application-dependent, e.g., for intruder detection, recommended 
deployment depth is 10 cm and sport feld irrigation, however, for precision agriculture 
depth of 40 cm - 100 cm is mostly recommended. 

Another method of underground communication, not given in Fig.1.3, is 
Through-The-Earth (TTE). TTE is applied in areas like military UG communication, 
geophysical exploration, and mining. It is mainly used to communicate in emergency 
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Table 1.1: Typical aspects for Through-The-Earth (TTE) and WUC scenarios [210]. 

Aspect TTE-based communication WUSN 

Frequency range VLF / LF VHF / UHF 

Maximum range (soil path) Up to hundred meters 5 cm to dozen meters 

Bandwidth Very small: bps Small: Kbps 

Network topology One-hop One-hop and multi-hop 

Network density Sender-receiver or few nodes Hundred to thousand nodes 

Underground channel noise Very critical aspect Small impact 

Rock penetration Feasible Usually not feasible 

Soil moisture Small impact Very critical aspect 

Energy criticality Relatively small impact Very critical aspect 

Node cost Relatively high Small 

Communication protocol design Emphasis on the physical layer Cross-layer approach 

situations where people stuck in disasters, e.g., miners stuck in mines[22]. WUC 
& TTE, with all their similarities, faces completely di˙erent set of challenges (see 
Table 1.1). For example, a typical depth considered for TTE deployment is very deep 
(hundreds of meters) as compared to WUC (few centimeters). Therefore, they are 
considered two di˙erent technologies in the literature [20, 48, 50]. 

It can be seen in the Table 1.1 that most of the challenges are related to the physical 
layer. TTE struggles in traversing rocks with long-range communication, and WUSN 
struggles in long-range communication through soil. Soil moisture highly e˙ect the 
subsoil communication [1, 59, 60], therefore, it requires cross-layer approach [1]. 
Moreover, WUC needs power-eÿcient nodes buried for long lasting operations. 

Relative permittivity of a soil depends upon the signal frequency and Volumetric 
Water Content (VWC), therefore, signal frequency indirectly e˙ect the strength of 
the signal [4, 8]. In addition to the frequency, soil conductivity also has an e˙ect on 
signal attenuation. This is contrary to the popular belief that signal is less attenuated 
under smaller frequencies. Hence, signal attenuation cannot be estimated from soil 
permittivity only, other soil parameters also contributes to the attenuation [4, 28]. 

Soil permittivity estimation has been investigated for a specifc range of frequencies. 
All such studies concludes that frequencies around 1 GHz produce reasonable soil 
permittivity values and are suitable for practical wireless systems under 300 MHz 
frequencies. However, as the frequency decreases, wavelength of the signal is 
increased, consequently, increasing the antenna size. Hence, very low frequencies, 
e.g., less than 300 MHz, are not feasible for WUC. In military WUC, the major 
requirement is to get longer communication range, e.g., less than 10 km. To that end, 
military WUC uses HF to LF frequency band flter with huge antennas consuming 
more power. It is shown that the signal su˙ers with much less attenuation under UHF 
bands (300 MHz - 3 GHz), and frequencies ranging from 300 MHz - 1 GHz [59] 
which makes them optimal to be used in practical WUC [32, 54]. 
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Fig. 1.4: Hybrid WUC Architecture 

1.2 Types of Wireless Underground Channel 

WUC does not contain only UG nodes. Hybrid WUC is a combination of underground 
(UG) and aboveground (AG) nodes [1, 47, 49]. As Hybrid WUC contains multiple 
types of devices, it also utilize multiple type of links for communication between them, 
i.e., aboveground-to-underground (AG2UG), underground-to-underground (UG2UG), 
and underground-to-aboveground (UG2AG). Fig. 1.4 shows one such hybrid WUC 
in an agricultural setup where various UG sensors nodes are communicating with 
each other from soil medium, through UG2UG channel, with di˙erent AG nodes and 
vice versa. AG nodes, i.e., agricultural equipment and Base Station, sends data to 
UG nodes through through AG2UG channel. Similarly, UG nodes sends data to AG 
nodes through UG2AG channel. Here, this book focuses on the characterization of 
WUC UG2UG channel. Moreover, other WUC channels, i.e., AG2UG & UG2AG 
channels, can be characterized using WUC channel model. 

Lateral waves have been extensively used in UG communications [23, 25, 27, 33] 
and empirically evaluated by [23, 77, 257]. Special antennas (eccentrically insulated 
traveling-wave (EITW) antenna) are used for empirical evaluation. Underground 
lateral wave communication is empirically evaluated through following UG2AG 
experiment setup: burial depth is 40 cm, aboveground antenna and soil surface were 
separated by the distance of 55cm, transmit power level is maintained at 30 dBm, 
and frequency of 144 MHz is used. The study [23] was successful to achieve longer 
communication range of 50 m [44]. 
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In [30, 46, 224], authors performed experiment to empirically evaluate UG2AG 
communication. The experiment setup for this study is given as follow: Terrestrial 
commodity sensors MicaZ [3] motes were used as UG node, operational frequency 
of 2.4 GHz, burial depths of 0 cm, 6 cm, and 13 cm, and transmit power level of 
0 dBm was used. The experiments were performed in two sets of sender-receiver 
scenario. Both sets di˙ered in distance between soil and receiver. For the frst set, 
the receiver was kept on the soil (distance = 0 m) and the second set was performed 
with a distance of 1 m between soil and the receiver. The UG2AG communication 
was evaluated for two metrics: packet error rate (PER) and received signal strength 
(RSS). First experiment, with a distance of 0 m, was used as baseline experiment to 
compare it with the second experiment. It was observed that node buried at 13 m 
depth was able to communicate at maximum horizontal distance of 2.5 m and node 
at 6 cm depth achieved a maximum of 7 m horizontal communication range. Hence, 
it shows that attenuation is inversely proportional to the path covered by the signal in 
the soil. The study achieved the PER of 10 % [29, 33, 65]. 

In [5, 26, 35], a uni-directional UG2AG communication model was studied with an 
e˙ect of refection dielectric on the signal attenuation. The model is validated through 
laboratory experiments. The experiment setup was as follow: SoilNet was used as 
sensors node, operational frequency was 2.44 GHz, transmit power of 19 dBm was 
used, and sensor were buried at di˙erent depth ranging from 5 cm to 9 cm. The 
strength of the received signal was measured by a soil probe. It was observed that for 
soil width of 1 cm to 7 cm, signal attenuation was increased up to 25 dB. However, 
10 dBm of attenuation was observed with 0 % to 35 % increase in VWC of the soil 
[36, 53]. Moreover, bulk density and bulk electrical conductivity had a negligible 
e˙ect on signal attenuation. The results confrms the empirical results presented by 
[210]. 

[28, 68] proposed a UG2AG communication model using a customized sensor 
node: Soil Scout. Following parameters were used for the experiments: operation 
frequency of 869 MHz, transmit power of +10 dBm, and an ultra wideband elliptical 
antenna [36, 41, 146] was used for underground communication [74] and model 
validation. The model predicts signal attenuation on the basis of (a) refection e˙ects 
of a soil surface, (b) dielectric loss of the soil, and (c) refraction e˙ect of an EM waves 
at soil surface (angular defocusing). It was shown that wideband antenna radiation 
pattern is independent of soil texture and soil moisture and showed eÿcient radiation 
in di˙erent soil types with varying soil moisture levels. The study [33, 40, 68] was 
successful to achieve long communication range of 30 m and 150 m at the burial 
depths of 40 cm and 25 cm, respectively. 

In [34, 37, 42], experiments are performed using customized sensor nodes. The 
experimental setup was as follow: burial depth was 10cm, operational frequency 
of 869 MHz is used, and transmit signal power was +10 dBm. [60] performs 
experiments for evaluating AG2UG and UG2AG communication links. It uses Mica2 
motes as sensor nodes, operational frequency and transmitting power are 433 MHz 
and +10 dBm , respectively. Moreover, they used an ultra-wide band antenna [146] 
which resulted in signifcantly improved communication range of 22 m and 37 m at 
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the depths of 35 cm and 15 cm, respectively. Similarly, [70] performs AG2UG and 
UG2AG experiments with Mica2 motes for precision irrigation application [34, 43]. 

Although UG2UG communication has been investigated a lot in the existing 
literature, however, there is still a gap in literature for detailed UG2UG communication 
channel characterization in subsurface soil region. Only few studies [1, 38, 39, 59] 
have performed theoretical and empirical analyses of UG2UG communication link. 
Therefore, a detailed characterization of UG2UG communication channel is presented 
in the coming sections. 

1.3 Underground Communications Overview 

Most commercially available solutions uses over-the-air (OTA) communication 
solutions. One of the major challenge in implementing OTA solutions is their 
unknown environmental impact. WUC uses soil as a medium for wireless underground 
communications. There are many license-free solutions (e.g., ZigBee, Bluetooth 
and DASH7) available for short-range communication. These are used in Industrial, 
Scientifc and Medical (ISM) bands. Recently, FCC has loosened the restriction on 
using the TV white space frequencies for farms [2] (Order No. DA 16- 307 Dated: 
Mar 24, 2016). Interference with other licensed band is not expected in this space. 

1.3.1 Components of UG Communications 

In UG communications, UG nodes are completely concealed. It reduces the operational 
cost and external impact from the environmental and weather changes [9]. UG nodes 
can communicate in any one of the two scenarios: 1) communication with devices 
above the ground termed as aboveground (AG) communication, 2) communication 
between the UG nodes is termed as underground (UG) communication. Furthermore, 
soil-air interface e˙ect the AG communication links. Due to interface, these links are 
not symmetric and must be analyzed for signals propagating in both directions, i.e., 
UG-to-AG and AG-to-UG. It shows that in order to achieve multi-hop connectivity, a 
practical distance for UG communication is limited to 12 m. For AG communication, 
a communication range up to 200 m is possible. If the UG communication medium 
is soil, it can have e˙ect the communication in following ways: 

• Changes in Soil Bulk Density and Soil Texture: EM waves attenuates in the 
soil. Soil is composed of various components such as pore spaces, clay, soil and 
silt particles. There can be 12 soil textures depending upon relative concentration 
of these components [25]. Bound water is the major component responsible for 
EM waves attenuation in the soil. The amount of bound water varies from one 
soil type to other. For example, sandy soil has less bound water from silt loam and 
silty loam, hence, it su˙ers from lower attenuation. Similarly, medium textured 
soils holds more water than coarse soils because of lower pore size. 
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• Volumetric Water Content (VWC) of Soil: The e˙ective permittivity of a soil 
is a complex number. Therefore, in addition to di˙usion attenuation, EM waves 
su˙ers attenuation due to absorption of water content by the soil [61], [9], [157]. 
Dielectric spectra conductivity of the soil is dependent on VWC or soil moisture. 
For a dry soil, dielectric constant is in the range of 2 and 6 and conductivity is 
in the range of 10−4 S/m to 10−5 S/m. For a near-saturation level soil, range 
of dielectric constant is 5 to 15 and that of conductivity is in the 10−4 S/m to 
10−5 S/m [68]. Coherence bandwidth of UG channel is a few hundred kHz 
[47, 63, 64]. Coherence bandwidth changes with the change in SM which makes 
the designing process more challenging. 

• Distance and Depth Variations: EM waves attenuation also depends upon travel 
distance of the signals. WUC sensors are normally buried in the top sub-meter 
layer. Therefore, received strength of the signal varies with the distance and 
depth of antennas. In WUC, sensors are buried in both, subsoil and topsoil layers 
[70, 158]. Burial at higher depth results in higher attenuation [47]. 

• Antenna in Soil: Return loss of a buried antenna varies due to high permittivity 
of soil [62]. Change in soil moisture levels changes soil permittivity which in turn 
causes variations in return loss. Resonant frequency is shifted to lower frequency 
spectrum due to change in return loss. Moreover, achieving high overall system 
bandwidth also becomes challenging for UG communications. 

• Change in Frequency: The path loss due to attenuation is frequency dependent 
[7]. High frequencies su˙ers high attenuation because of increased water 
absorption. The EM waves in soil have shorter wavelength as compared to 
EM waves in the air because of higher permittivity of the soil. Channel capacity 
in soil is also determined by operation frequency [62]. 

• Lateral Waves: Underground nodes communicate with each other using any one 
of the three major paths: direct, lateral and refected (LDR) waves [19, 63, 64, 147]. 
Direct and refected waves are most e˙ected by above-mentioned challenges 
because their complete travel path is through the soil. On contrary, lateral waves 
can travel along soil-air interface in air, hence, they experience lowest attenuation 
among all. Therefore, lateral waves are the most important component to consider 
while extending the UG communication range. 

• Developments in WUC: UG communications have evolved a lot since its 
inception. A lot of work has been done in characterization of UG channel and 
cross-layer communication solutions are proposed to get long communication 
range and achieve high data rate. In [147], authors capture and analyze impulse 
response of UG channel through detailed experimentation. 

A total of 1500 UG green-house testbeds has been developed to analyze the e˙ect 
of soil moisture and soil texture on wireless UG communication channel. These 
experiments helped in developing main characteristic of wireless UG channel impulse 
response such as: root mean square delay spread, coherence bandwidth, and power of 
multi-path components. It also validates main components of UG channel, i.e., direct, 
lateral and refected waves. The coherence bandwidth decreases with the increase 
in distance in soil, e.g., it is shown in [147] that a coherence bandwidth of less than 
1.15 MHz can decrease further upto 418 kHz, if distance is increased for more than 
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12 m in soil [147]. Root mean square delay spread is a˙ected by the soil moisture 
and it should adapt to change in soil moisture values. In [62], an important statistical 
model for UG multi-carrier communication and soil moisture adaptive beamforming 
is given for WUC solutions. 

1.3.2 Examples of UG Wireless Communication Systems 

WUC is being used in many applications: border patrol, precision agriculture, and 
environment monitoring. WUC mainly consist of two components: sensors and 
communication devices. These components are either completely or partially buried 
in the soil. WUC aims to provide real-time soil monitoring and sensing. In precision 
agriculture, WUC is mainly used for sensing and monitoring of soil and other related 
physical properties [9, 52, 58, 67, 75, 77, 81, 86, 100, 104, 139, 141, 145, 164]. The 
WUC are also being used to implement border monitoring for stop border infltration 
[54, 71]. Other monitoring applications of WUC includes pipeline monitoring and 
landslide monitoring [70, 75, 164]. 

Another important component of WUC is the wireless communication. There 
exist few models in the literature which represents underground communication. 
Underwater communication [6, 145] has same challenging medium as of underground 
communication. However, for underwater communication, acoustic waves [6] are 
used instead of EM waves due to very high attenuation of EM waves in the water. 
Acoustic propagation has its own disadvantages such as: low quality of physical 
link and higher delays because of low speed of sound, extremely low bandwidth, 
challenging deployment and size and cost of equipment. These disadvantages restrict 
the use of acoustic methods for WUC. 

1.4 Why UG Wireless is di˙erent from Over-the-Air Wireless? 

Wireless underground communications with magnetic induction (MI) has also been 
studied in [69, 94, 100, 108, 168, 233]. However, signal strength of MI-based solutions 
attenuates with the inverse cube factor and su˙ers from very low data rates. MI 
communication is also dependent on relative position of receiver and sender as it 
cannot communicate if both receiver and sender are perpendicular to each other. 
Furthermore, long wavelength of the magnetic channel does not allow network to 
scale. These disadvantages and inability of communicating with the aboveground 
devices does not make MI solutions a feasible option for WUC. 

Some literature [61, 177] has given UG channel models without empirical 
validation. Integration of WUC with precision agriculture cyber-physical systems and 
center-pivot systems is given in [9]. Underground channel is empirically evaluated 
in [157, 158], however, they did not consider the antenna bandwidth for evaluation. 
A 2-wave path loss model is developed in [177], without considering the lateral 
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Table 1.2: Summary on WUC systems 

WUC Systems 

MI-Based 
[100] [94][108][69] [233] [168] [166] [92] [236] [95] [99] [96] 
[110] [96] [60] [252] 

Technology 
Specifc EM-Based 

[265] [218] [114, 115] [69] [281] [201] 
[44] [70] [77] [276] [8] [56, 276] 
[81] [58, 74, 277] [102] [279] [62] [64] [45] [226] [55] [31] 

Acoustic 
Based 

[103] [6] [73] [130] [203] [88] 
[84] [63] [268] [7] [140] [51] 
[163], [256], [225] [14] [116] [216, 275] 

Channel 
Modeling [211] [118] [117] [274] [229] [169] [228] 

Wired [155] [80] [55] [124] [21] [104] [86] [280] [282] [147] 

Agriculture 
[265] [281] [44] [58, 74, 277] [103] [203] [51] [216, 275] 
[279] [283] [66] [28] [62] [64] [45] [147] 

Application 
Specifc 

Drilling and 
Telemetry 

[78] [64] [149] [82] [68] [152] [79] 
[116] [116] [14] [140] [7] [268] [63] [130] [73] 

Oil & Gas [282] [280] [155] [156] [97] [112] [68] [101] [8] [201] 

Irrigation [19] [132] [22] [283] [138] [137] [123] [129] 
Mining, 
Monitoring 
and Tracking 

[86] [104] [21] [155] [121] [122] [120] [4] [75, 76] [5] [98] 
[163], [256], [88] [225] [44] [284] [127] [151] [125] [240] 

wave component. Path loss prediction model has been proposed in [30], however, 
they did not considered underground communication. In [164], authors presents an 
underground communication model for mines and road tunnels. However, it cannot 
be applied to WUC due to di˙erence in wave propagation mechanism in tunnel and 
soil. A model is proposed by [61] for closed-form path loss with lateral waves but this 
simple model cannot capture statistics and impulse response of the channel. [145] 
presents the detailed characteristics of coherence bandwidth of the underground 
channel. 

There is no detailed discussion about the channel capacity in the literature. Capacity 
of single-carrier underground communication channel has been discussed in [62]. 
This discussion, however, does not consider a practical modulation scheme and does 
not perform the empirical validation. In [139], the authors analyze the capacity of 
multi-carrier modulation in underground channel using empirical values of coherence 
bandwidth, channel transfer function, and return loss of antenna. They used three 
di˙erent types of soil and under varying levels of soil moisture conditions. 

WUC antennas are di˙erent from traditional antennas used for OTA communication 
because of deployment in soil. In 1909, Somerfeld’s seminal work [223] laid the 
foundation of study of EM waves propagation. For the complete 20th century, EM 
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wave propagation in subsurface stratifed media and e˙ect of medium on EM waves 
has been investigated thoroughly in many works [6, 7, 8, 13, 20, 28, 70, 72, 78, 79]. 
These studies uses infnitesimal dipole of unit electric moment for analysis of 
electromagnetic felds. However, it is desirable to use fnite size antenna with already 
known feld pattern, current distribution and impedance for practical purposes. Field 
calculations and dipole numerical evaluations for lossy half space was frst studied in 
[134]. In [78], authors extensively analyze the propagation of EM wave along the 
interface. However, this work does not apply to underground buried antenna. Buried 
dipole were analyzed in lossy half space in [28]. The authors presented the ground 
wave attenuation factor of far-feld radiation from UG dipole and depth attenuation 
factor using two vector potentials. However, it does not consider the current refected 
from the soil-air interface. In [7], authors calculate the feld component per unit 
dipole using Hertz potential. The di˙erence between the study in [28] and [7] is that 
the former ignores the displacement current in lossy half space. Authors in [72] gives 
the Hertzman dipole in an infnite isotropic lossy medium. EM felds are improved 
by considering lateral waves and half-space interface in [20, 74]. 

Studies in [19, 19] analyze antennas in a matter where antennas EM felds have 
been theoretically derived in half space and infnite dissipative medium. These analysis 
assumes perfectly matched dipole antennas, hence, do not consider the return loss. 
Relative gain expressions of underground antennas are developed in [20, 79] without 
empirical results. The impedance of dipole antenna inside the solutions is evaluated in 
[22]. It discusses the e˙ect of antenna depth, dipole length, and solution’s permittivity. 
However, this work cannot be used in WUC because of di˙erence between soil 
and solutions permittivity. Moreover, it does not consider change in permittivity 
occuring because of soil moisture. [24] studies the communication between the buried 
underground antenna without considering orientation and impedance of antenna. 
Another work [18] conduct the performance analysis of four antenna buried in 
refractory concrete. In this work, the transmitter is buried at 1m depth and author 
does not consider the concrete-air interface. [11] analyze circularly polarized patch 
antenna. It does not consider the interface e˙ect and antenna is buried at 3cm depth 
in concrete. 

Current WUC applications and experiments calculate the soil permittivity by 
using soil dielectric model [26, 54] which evaluates to actual wavelength used 
for the antenna design [74]. In [74], an WUC-based elliptical planar antenna is 
designed. It, using the same frequency, compares the antenna wavelength in soil 
and air to determine the size of the antenna. However, this methodology lacks in 
providing impedance match. [80] presents results from the experiments on Impulse 
Radio Ultra-Wide Band (IR-UWB) WUC without considering the e˙ect of soil-air 
interface. [249] designs surface-based lateral wave antenna and does not considers 
the underground scenarios. 

Impedance change in soil cause disturbance. This is similar to the disturbance 
caused by impedance change of hand-held device in close proximity with human 
body [32, 248] or that by devices which are implanted in the human bodies [38, 57]. 
Experiments results obtained from these applications shows that the human body 
contributes to performance degradation of antenna. Even these studies are similar, 
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they still cannot be used in WUC because of the di˙erence between the permittivity of 
soil and human bodies. Permittivity of human body is greater than the soil. Moreover, 
permittivity of human body is static whereas soil has varying permittivity mainly 
dependent upon the moisture. For example, at frequency of 900 MHz, human body 
has permittivity of 50 [248] and that of soil with 5 % moisture is 5 [26]. 

Beamforming has been investigated for over-the-air wireless channel [4, 5, 11, 
24, 27, 28, 79] and MI power transfer [21]. However, there exist no work in the 
literature on UG beamforming. Using beamforming, lateral components [19] in UG 
communications can go to the longer distance which is normally limited to 8 m -
12 m owing to high level of attenuation su˙ered because of soil [145]. 

There has been discussion on soil permittivity and soil moisture in the literature. 
Here some of those techniques are discussed for comparison purpose. This comparison 
will highlight the di˙erence and similarities between di˙erent techniques. Some of the 
method used for quantifying water content in the soil includes: gravimetric method, 
GPR, TDR, capacitance probes, hygrometric techniques, tensionmetry, nuclear 
magnetic resonance, resistive sensors, gamma ray attenuation, electromagnetic 
induction, remote sensing, neutron thermalization, and optical methods. 

Firstly, techniques which are used in laboratory for the soil properties estimations 
are discussed. laboratory based. Authors in [12] soil density, soil moisture and 
frequency to derive EM parameters of the soil. The model restricted soil moisture 
weight to 20 % and it need rigorous methods of sample preparation. Authors in [6] 
develops a probe-based lab equipment which uses vector network analyzer (VNA)in 
the frequency range of 45 MHz to 265 MHz. In [74], a model for estimating a 
dielectric permittivity of soil is developed on the basis of empirical evaluation. 
Authors in [7] develops tyje model for dielectric permittivity for frequencies greater 
than 1.4 MHz. Peplinski in [26] modify this model to work in the frequency range 
of 300 MHz - 1.3 GHz. A detailed survey for soil permittivity estimations is given 
in [6]. All of these methods are performs in laboratories and requires soil sample 
from the site. Collecting soil sample from the soil is very labor intensive and do not 
represent he in-situ soil conditions. Therefore, it is required to developed automated 
techniques for monitoring the soil moisture. 

Another approach of measuring soil properties is given in [25]. It is based on 
TDR and require refractive index and impedance of soil. [67] propose a technique to 
estimate of EM properties of soils for detecting Dense Non-Aqueous Phase Liquids 
(DNAPLs) hazardous materials using Cross-Well Radar (CWR). This technique 
transmits wideband pulse waveform in the range of 0.5 GHz to 1.5 GHz. It also 
calculates soil permittivity with transmission and refection simulations in dry sand. 
The well-explained survey on measurement of time domain permittivity in soils is 
presented in [70]. For TDR-based approaches, it is required to install sensors at each 
experiment location. However, in order to make e˙ective decisions in agriculture, 
real-time soil moisture sensing is the primary requirement. 

Many studies have been proposed to investigate antenna related soil properties. 
An attempt to measure electrical properties of earth using buried antenna has been 
proposed in [60], [61]. However, this method requires measuring the input reactance 
for obtaining electrical parameters of the material, and length of antenna is also 
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required to be adjusted to get zero input reactance. [62] uses Fresnel refection 
coeÿcients to estimate GPR-based soil permittivity with soil antenna. However, 
they do not provide empirical validation and also require a complex time-domain 
analysis. In [3], dielectric properties of soil are presented using wideband frequency 
domain and frequency range of 0.1 GHz - 1 GHz. It uses impedance measurement 
equipment (LCR meter) and VNA. In [24], [75], complex dielectric properties of 
soil are measured using frequency domain method which requires placing soil in the 
probe. 

Soil moisture and permittivity can also be measured by using GPR method. [13] 
estimate ground permittivity by correlating ground dielectric properties with cross 
talk of early-time GPR signal. However, GPR method requires calibration and work 
only for shallow depths (0 – 20cm). Furthermore, soil moisture measuring technique 
cannot be limited to a certain burial depth. 

Another important method of measuring soil moisture is remote sensing. Remote 
sensing has a high range of measurement [69] and is sensitive to soil water content 
[18]. There are two major type of remote sensing: active and passive. Passive remote 
sensing [20] has low spatial resolutions which can be improved by active remote 
sensing technologies, however, active methods limits the soil moisture readings to 
few centimeters of the topsoil which highly e˙ect the readings taken [59]. Table 7.1 
summarizes the existing work done in WUC. 

1.4.1 Limitations of Over-the-Air Wireless in Soil 

There are many research challenges face by the development and widespread of 
WUC. These challenges must properly be investigated. A centralized networking 
solution for WUC can be classifed in to two architectures: (1) One with only buried 
UG nodes communicating with the AG node using UG links, and (2) Hybrid WUC 
employing both UG and AG nodes (static and mobile) to communicate through UG 
and OTA links [1, 70]. Apart from OTA links, UG2AG and AG2UG links are also 
being used extensively. Therefore, multi-hop networking involving UG2UG links 
must be investigated in detail. 

A detailed analysis of UG2UG communication must be performed to address the 
WUC challenges. Although, all challenges cannot be solved owing to the challenging 
environment of WUC, however, identifying and proposing solutions for the major 
challenges is also an important contribution to it’s development. To that end, the 
WUC research challenges are discussed below: 

A. Antenna problem - A radio communication can be analyzed theoretically in two 
phases: (1) the antenna problem and (2) the propagation problem. WUC model is an 
underground propagation model. A dipole antenna with an ideal isotropic radiation 
pattern can guarantee high accuracy with combination of generic antenna gains and 
initial decays. However, with unavailability of ideal antennas, more practical approach 
would be to introduce specialized antenna factor for DW, RW, and LW to achieve 
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Fig. 1.5: E˙ects of the VWC on the ratio between antenna’s length and wavelength of 
the signal [57] 

more accuracy. Furthermore, conducting empirical investigations using large number 
of di˙erent values for burial depths, transmit power levels, and VWC, can precisely 
address the antenna problem. 
Underground channel modeling with antenna problem is a very complex task. The 
complexity level increases manifolds even if one component of antenna problem 
is considered for modeling. To understand this issue, consider an example of the 
radiation pattern of the antenna and its implied directivity gain. Figs. 1.5 and 1.6 
shows how VWC impacts the radiation pattern of an antenna. First, change in VWC 
changes the signal wavelength in soil which will also change the ratio between the 
signal’s wavelength and antenna’s fxed length (17.3 cm). The given values are from 
Mica2 mote (a 1/4 monopole antenna) antenna operating at 433 MHz. The ratio 

length
wavelength considers two times of Mica2 antenna length, e.g., 34.6 cm, and half the 
wavelength of signal in soil or air. The two-fold increase in length is mandatory 
because a 1/4 monopole antenna is same as 1/2 dipole antenna with ground structure 
representing half of the antenna. Therefore, 1/2 ratio for a half-wave dipole is shown 
for the comparison. VWC causes decrease in wavelength which in turn increase the 
length-wavelength ratio. 
Fig. 1.6 plots the elevation pattern of a linear dipole antenna (oriented vertically) with

lengthlength measured in terms of wavelength [253]. The change in ratio (wavelength ) (Fig. 
1.5) is represented using di˙erent radiation pattern (Fig. 1.6). VWC causes increase 
in ratio making the radiation pattern behaviour monotonous. 
The antenna problem di˙ers with type of antenna and orientation of antenna and should 
be addressed accordingly for each antenna scheme. However, all antenna schemes 
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Fig. 1.6: Volumetric Water Content e˙ecting radiation pattern monopole antenna [57] 

are not suitable for underground communications. Therefore, it is recommended to 
identify antenna schemes which can improve the performance of UG2UG, UG2AG, 
and AG2UG links to support WUC channel model with adding more antenna models. 
A possible solution is suggested along with th results in [23, 60, 68, 70, 77, 257]. It 
uses an ultra-wide band antenna for UG2AG and AG2UG links and traveling-wave 
antenna to study lateral wave propagation in UG2UG links. An empirical investigation 
must be done to evaluate the solutions for di˙erent depth and transmit power level. 

B. Burial depth - In WUC model, burial depth can be defned as the distance between 
antenna center and soil surface. The existing results shows a strong correlation between 
depth and communication performance. Hence, burial depth of sensors and radio 
modules has no e˙ect on the model but antenna’s depth does. Adjusting to optimal 
depth can signifcantly extend the communication range along-with a high power 
transceiver. There are also some design constraints in WUC which cannot be violated, 
e.g., in crop irrigation, nodes must be below the topsoil region where plowing happens. 
The challenge is to deploy antenna in topsoil such that they are not a˙ected by the 
mechanical activities in their vicinity. One solution is installing and removing nodes 
during such activities, however, it will increase the deployment cost. Apart from the 
increased cost, installation and calibration of soil sensors is also a time taking process. 
In some scenarios, where sensor(s) and processors are permanently fxed in subsoil, 
easy installation/removal is only possible for communication module near to soil 
surface (see Fig. 1.7). In such cases, sensors are fxed and only removable component is 
the long-range communication module. This module requires a short-range transceiver 
(with deeply buried sensor nodes) and a transceiver which enables communication 
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Fig. 1.7: The WUC deployment 

between above-ground devices and other long-range modules. There is a need to 
investigate optimal values of burial depth (including dbg=0) for such long-range 
module. 

C. Housing for the sensor nodes - In some WUC, concealment of sensor nodes 
is more important than the high depths. One solution is to use plastic boxes which 
can conceal processor, communication module and antennas. However, it has never 
been investigated in detail for UG2UG communication and preliminary experiments 
shows completely di˙erent e˙ects on communication performance. A scenario using 
stratifed media (air/soil) must also be analyzed for UG2UG links in WUC. 

D. Direct and Refected waves. So far, communication through lateral waves 
has been presented as a power-eÿcient solution to achieve a long range UG2UG 
communication. WUC model can be converted into a simple LW model. However, it 
is not recommended to do so, because the short range communication is mainly based 
on DW (Fig.1.7). Some components of WUC model can also be used in development 
of UG2AG/AG2UG channel models. Inter-node distance can be increased using 
directional antennas and high-power transceiver. 

E. Lateral waves. There is a need of detailed empirical and theoretical evaluation 
of lateral wave propagation for UG2UG links in WUC. The results discussed are 
highly limited by the power-eÿcient transceiver and antennas. Special antennas and 
high-power transceivers must be used to achieve long-range communication. It will 
contribute towards complete validation of WUC model. 
E˙ect of using terminated traveling-wave antennas needs to be studied. These antennas 
were used for underground communication previously [23, 77, 257]. Therefore, 
these studies can be re-investigated for a typical WUC scenario with modifed 
deployment parameters. The power requirements of multi-hop LW/UG2UG technique 
and centralized one-hop UG2AG/AG2UG must be studied in detail to give extremely 
important power related guideline for developing WUC. 



U~llil \'Ao!\'(:0 ...................................................... ·····► 

I . . 
/" , I~ 

20 1 Introduction to Wireless Underground Communications (WUC) 

Fig. 1.8: Lateral waves can potentially be applied in security applications for WUC 

It is also important to study the impact of snow, water and obstacles in surface on 
UG2UG links communicating using lateral waves. The results from such studies can 
further complement WUC model. These studies can be used for security purposes, 
e.g., detecting intruder in border patrol application. The detection process uses the 
disturbance of wireless channel (Fig. 1.8). 

F. UG2AG and AG2UG channel models. A detailed channel model for UG2AG 
and AG2UG links must be developed. There exists no generic model which can be 
applied to all WUC. There are some preliminary empirical investigation done by 
[60, 70], however, an in-depth theoretical analysis is still needed. Overall energy 
consumption requirement for such solution also needs to be investigated. Lateral wave 
propagation already has its application in UG2UG links. However, a comparative 
study for the power budgets of multi-hop LW/UG2UG approaches and centralized 
one-hop UG2AG/AG2UG should be done. 

1.5 Anatomy of a WUC Module 

The underground nodes currently used in WUC testbeds su˙er from several 
shortcomings. These shortcomings lead to reduced communications performance in 
WUC, reduced experimental e˙ectiveness, and higher costs. To address these faults, 
there is need of nodes tailored to WUC. The following capabilities are desirable in 
these nodes [65], [210]: 

Environmental Factors - The current generation of WUC nodes is designed to 
support academic research being conducted primarily in a laboratory setting. Hence, 
the experiments do not consider many feature of uncontrolled outdoor environments. 
First, the WUC nodes cannot be reprogrammed without interfacing to a special 
hardware board. If the devices are to be reprogrammed in the feld, they must either be 
dug up, or each mote should be deployed with an additional hardware programming 
board. Digging up the WUC nodes is a time-consuming and a diÿcult process. 
Deploying the additional hardware to reprogram the WUC nodes underground is 
expensive, and complicate the deployment process [65, 210]. 
Secondly, remote charging of the nodes is not possible. If a node’s battery ends during 
an experiment, a buried node must be dug up for the battery replacement. It is an 
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extremely time consuming operation, and the performance of an experiment may be 
suboptimal until the node is replaced [38, 43]. 

Propagation - While the current experiments demonstrate the viability of WUC, 
the performance could be further enhanced by tailoring the radio of the mote as per 
the requirement of the underground networks. The radios of the current WUC nodes 
are designed to communicate over-the-air. The parameters of the radios are not well 
matched to the WUC environment in terms of transmit powers and frequencies. The 
existing WUC nodes can be modifed to better match the desired parameters, however, 
it is not as e˙ective as choosing a radio specifcally matched to the needs of a WUC 
node [36]. 

Sensing - The sensor packages that can be deployed with the current generation of 
WUC nodes do not collect all the information desired for an underground environment, 
or contain many extra sensors that are not useful for WUC. These added sensors 
increase the cost of deploying experimental testbeds. 

All of these areas can be improved by using a node designed specifcally for WUC. 
To address these challenges, a WUC node should be designed to operate on a limited 
power reserves, monitor the underground environment, and communicate the results 
to aboveground nodes. The design of the di˙erent desirable aspects of a WUC node 
are give below [65, 210]. 

(i) Transmitter/Receiver - A radio should have a high transmit power and be able 
to operate on a variety of sub-1 GHz frequencies that are suitable for WUC [34]. 
The radio implementation can be modifed to meet the specifc requirements 
of the antennas and RF environment of WUC-application. It will increase the 
transmission range and capabilities of a radio device. 

(ii) Microcontroller - The microcontroller should be able to provide enough 
processing power [51]. One such example of a microcontroller is MSP430 which 
is extremely energy eÿcient and also extends the lifetime of the deployed sensors. 
The MSP430 can also interface to a variety of sensors, communication, and 
storage devices. 

(iii) Sensors - The WUC node should contain a built in accelerometer and temperature 
probe with an ability of interfacing with an external soil moisture sensor. The 
combination of multiple sensors enables a node to accurately measure the 
characteristics of the underground environment. These measurements can help 
the radio to adapt to its environment in real-time. Accordingly, the sensor readings 
can be used to assess the viability of energy harvesting through kinetic vibrations 
[47]. 

(iv) Data Repository - WUC nodes should have an on-board micro-SD card for 
storage. This large storage space can be used to store extensive sensor readings 
for a long-term monitoring of the underground environment. By adding a large 
storage capability, the system can sense at a much higher rate than it can transmit 
information. After an extended deployment, the information from nodes can be 
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recovered, and a highly detailed model of an underground environment can be 
developed from the stored sensor readings [52]. 

(v) Energy - WUC node should support a variety of energy sources with energy 
harvesting and external power transfer support that enables the system to sense 
at higher rates and operate for longer periods of time than the current generation 
of WUC nodes [65, 210]. Moreover, the nodes should also support recharging 
through a USB cable accessible from aboveground after the node has been 
deployed. Accordingly, the device can be recharged quickly in the feld without 
removing and re-deploying a node in the testbed. The mote can also be enhanced 
with kinetic energy harvesting capabilities that will further increase the lifetime 
of the WUC nodes. 

1.6 Research Challenges 

The development in WUC has extended the research possibilities and brought some 
research challenges as well. Therefore, this section presents the research challenges 
in this area. Moreover, Table 1.3 shows the importance of these challenges in the 
di˙erent WUC applications. 

Deployment 
Deployment is a major issue in WUC applications because of the harsh underground 
environment [87]. The underground smart objects can easily be damaged by the 
aboveground activities, i.e., digging, plowing, harvesting. Therefore, node deployment 
is very diÿcult in WUC as compared to the terrestrial networks. The objects with high 
energy requirement should be deployed near to the surface so that frequent battery 
replacement can be done easily. High capacity batteries and power saving protocols 
can also be used to meet the requirement of high energy nodes. The deployment 
challenge become relatively severe in WUC applications such as seismic and Oil & 
gas exploration because of higher depth. Therefore, in [166], a MI-based WUC is used 
with managed and organized orientation of coils to minimize the power refection. 
[95] reduces the complexity by using di˙erent deployment strategies (horizontal 
and vertical). One important issue to consider is the path loss occurring due to 
heterogeneous nature of soil. Unfortunately, there is a very limited work on eÿcient 
WUC deployment which aims to solve this challenge along-with the consideration of 
di˙erent operational parameters [33, 53, 55]. 

Channel Modeling 
The EM signal attenuation is much higher in soil as compared to the terrestrial 
networks [44]. The major factors contributing to high attenuation loss is the soil 
permittivity and conductivity which was also the reason for inception of the MI-based 
WUC. Each layer of the heterogeneous soil e˙ects the magnetic feld di˙erently. 
Given this behavior, [265] assigns a scaling factor to di˙erent depths. In [100], the 
authors studies propagation though the soil by calculating the skin depth of each layer. 
[229] characterizes the path loss for MI-based communication. [61] investigates the 
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Table 1.3: Research challenges for IOUT applications [114] 

Research 
Challenge 

Agriculture Seismic 
exploration Oil & Gas 

Deployment Medium High High 

Channel modeling Medium Medium High 

Transmission 
range Low High Medium 

Latency Low Low Medium 

Reliability Low Medium High 

Security Medium High High 

Scalability Low Medium Medium 

Robustness Low Medium High 

Networking High Medium Medium 

Cloud computing High Medium Low 

Fog computing Low Medium High 

Localization Medium High Medium 

asymmetric transceiver to cope up with the case of coils misalignment in MI-based 
WUC. Path loss has been extensively studied for each type of the wireless channel, 
however, few e˙orts have been made for WUC systems. Therefore, this area of WUC 
needs special consideration. 

Transmission Range 
MI-based WUC with all its advantages, i.e., not e˙ected by boundary e˙ects & 
multipath fading [169], has a disadvantage of limited transmission range. This is 
because of high path loss in the soil. In [92, 166], authors proposed using relay 
coils to extend the transmission range. Similarly, [92, 104] proposed using super 
conductors and meta-materials for this purpose. Large coils were used in [97] with 
an aim of achieving high transmission range, however, it might not be a practical 
solution. Therefore, achieving the long communication range for buried nodes is an 
important research issue. 

Latency and Reliable Communication 
Latency and reliable communication is the primary requirement of all critical 
applications such as Oil & Gas exploration. Late or incorrect sensors reading can cause 
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major disaster. WUC challenging environment is the major hindrance in achieving 
the reliable communication. Although, the reduced latency and reliability is one of 
the major requirement of the conventional IoT as well [47, 51], however, in WUC, 
this issue needs more deliberation due to tough operating parameters and regulations 
on sub-surface environment. It is not possible to meet the WUC communication 
requirement with any single system. For example, wired communication provides 
reliability and low latency whereas wireless solutions are scalable with low complex. 
Therefore, it is important to develop a WUC with low latency, lower transmission 
delays and minimized sensor failures. 

Security 
Security is the least studied aspect of WUC systems. WUC security includes: security 
of equipment, and security of communication protocols. Node replication, jamming 
the signal, and worm hole are few potential security attacks that can occur in WUC 
systems. A security breach can be used to raise false alarms. Responding to the 
frequent false alarms can exhaust network resources. In [154], authors discusses 
the security issues (e.g., forward and backward security) and malicious attacks 
(e.g., node compromise attack) on a cloud-based IoT. Authors in [47] uses the data 
tagging technique for improved data security. They uses information fow control 
(IFC) for this purpose. A secure IoT architecture using host identity protocol (HIP) 
and datagram transport layer security (DTLS) is presented in [53]. [204] provides 
an extensive security survey in IoT. These studies are targeted towards improving 
security in terrestrial networks, however, these can be modifed to WUC environment 
by introducing underground operational constraints. For example, old Oil & Gas 
systems are being transformed to digital WUC systems. Therefore, it is required to 
update security of such globally connected systems which, otherwise, in an event of 
cyber attack, can lead to some disastrous situation. Blockchain technology can be 
also be used in WUC systems to deal with the cyber crimes [49, 54]. 

Scalability 
Scalability issues can rise due to the factors such as: higher network density, high 
energy-consumption of underground things, node failures, routing overhead, low 
memory of underground nodes, and vendor-specifc nodes can cause interoperability 
issues. [55] uses spatio-temporal stochastic modeling to deal with the scalability 
in WUC. For tunnels, [107] proposed an adaptive structure-aware WUC system. 
Interoperability issue is discussed in [107] using middleware protocol. Heterogeneity 
of sensor nodes is studied in [259]. The mentioned work deals with the scalability of 
terrestrial IoT, however, these can be modifed as per requirements of WUC systems. 
For example, high path loss in soil limits the deployment of large wireless network. 
This problem is studied in [26, 250] which uses the sink nodes to connect with the 
sparsely buried sensor nodes. It uses the energy harvesting to increase the lifetime of 
the nodes. Besides these solutions, it is important to eÿciently develop a self-healing 
and self-organizing WUC systems which can overcome the scalability issues. 

Robustness 
An underground channel is very unpredictable facing the issues like: energy constraints, 
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dynamic topology, sparsity of nodes. Hence, achieving robustness is very critical in 
WUC systems. A small world model is proposed in [113] for the improvement of 
latency and robustness by considering the local importance of smart objects. Extensive 
literature exist for the improvement of robustness in terrestrial network [35], however, 
work in robustness in WUC is limited to the mining application. For example, [85] 
improve the robustness of an underground mining by using a wireless mesh network. 
One of the major challenge in the WUC systems is to develop robust communication 
and data gathering techniques. Communication range of EM waves in soil is highly 
limited because of attenuation. However, magnetic induction is considered relative 
robust for communicating in the soil but requires perfect orientation of the coils. The 
research of MI-based WUC for robustness is still not mature and needs to be studied 
further. 

Hybrid Sensing 
Hybrid sensing systems includes the usage of multiple sensor systems and integration 
of their signals, e.g., long-term underground fber sensors can be combined with 
short-term ground penetrating radars fro the purpose of detection and localization. 
SoilNet Systems [7] is an hybrid sensor system which combines Zigbee network 
with wired communication. Zigbee network is used for above-ground nodes and 
wired communication is used fro the underground nodes. A combination of EM- and 
MI-based can be used for providing long-range downlink (EM-based) and short-range 
uplink (MI-based) communication [97]. Therefore, hybrid sensing systems can 
improve the eÿciency of WUC systems. 

Software Defned Networking (SDN) 
Software Defned Networking (SDN) provides robustness, scalability, reliability 
and secure networking solution for WUC systems. It is di˙erent form conventional 
networking solutions in that it separates the control logic from the networking 
hardware. These advantages make its suitable for the usage in underwater environment. 
A surface station can be any SDN controller which communicates with the underwater 
sensors through in/out-band control channels [13]. The SDN controller will separate 
the data plane and controller plane. Such technique can also be used for WUC systems 
[148]. SDN-based WUC will have lower network complexity, improved congestion 
control mechanism, increased network life, eÿcient utilization of network resources, 
and reduced latency. For example, SDN-based WUC for Oil & Gas can allow users to 
eÿciently manage the system by providing the global view of buried sensors nodes. 
SDN-based WUC can also be used in agricultural applications for achieving a scalable 
network solutions. Furthermore, data visualization can be used with SDN-controller 
for correlation of sensor data. These advantages of SDN paradigm forces researcher 
to look into the possibilities of SDN-based WUC systems [29]. 

Big Data 
Massive amount of data is generated by WUC applications (agriculture, seismic 
surveying, and oil/gas felds). This data should properly organized, correlated and 
analyzed for making accurate decisions [65]. Integration of big data and traditional 
IoT is already being studied extensively, e.g., [19] presents the application of big 
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data in IoT. In [143], authors studies the application fo context-aware computing 
in IoT. These works motivate and presents an opportunity fo integrating big data 
analytics with WUC system. For example, Oil & Gas WUC generates glut of data and 
managing that data is the major concern of respective industries [40, 41]. Similarly, 
geo-scientists spends major portion of their time (nearly 50 %) on managing data. Big 
data provides an opportunity to handle such big amount of data and perform analysis. 
Therefore, proper data analytics tools must be developed for the WUC systems. 

Fog and Cloud Computing 
Cloud/fog computing provides di˙erent feature (scalability, mobility, low delays, and 
location awareness) for an eÿcient WUC systems. Cloud computing has been used 
for the management purposes in Oil & Gas industries whereas fog computing has 
been used for reducing data traÿc and analysis of data at edge [144]. In Oil & Gas 
industries, huge data generated by the upstream operations (e.g., drilling and seismic 
exploration) is a major challenge. Fog computing can be used for provision of localized 
data analytic being generated in real-time. It helps in minimizing communication 
delays and faster event response. Moreover, time-critical applications require eÿcient 
decision making procedure because it is possible that decision making opportunity is 
gone by the time data reaches the cloud. Hence, fog computing should be integrated 
with WUC systems [44]. 

Eÿcient Localization Methods 
Localization can be done in many applications such as WUC monitoring, geo-tagged 
sensing, and optimized fracturing. There are limited studies which tries to fnd 
location of buried nodes of MI-based WUC. In [120], authors developed a testbed for 
tracking objects in MI-based WUC. [5] studies how mineral and rocks in underground 
environment e˙ect the accuracy of localization. The accuracy of MI-based WUC is 
also investigated in [37, 42, 156]. It is important to note that localization work exist 
only for the MI-based and there is no such investigation done in EM-, acoustic-, and 
VLC-based WUC. Therefore, robust and accurate localization methods are required 
for these WUC systems. 

References 

[1] Cisco Visual Networking Index. https://www.cisco.com/c/en/us/ 
solutions/service-provider/visual-networking-index-vni/ 
index.html. 

[2] Fcc order no. da 16-307 dated: Mar 24, 2016. https://apps.fcc.gov/ 
edocs_public/attachmatch/DA-16-307A1.pdf. 

[3] Crossbow Mica2, Micaz, and IRIS motes. http://www.xbow.com, 2020. 
[4] Traian E Abrudan, Orfeas Kypris, Niki Trigoni, and Andrew Markham. Impact 

of rocks and minerals on underground magneto-inductive communication and 
localization. IEEE Access, 4:3999–4010, 2016. 

https://www.cisco.com/c/en/us/solutions/service-provider/visual-networking-index-vni/index.html
https://www.cisco.com/c/en/us/solutions/service-provider/visual-networking-index-vni/index.html
https://www.cisco.com/c/en/us/solutions/service-provider/visual-networking-index-vni/index.html
https://apps.fcc.gov/edocs_public/attachmatch/DA-16-307A1.pdf
https://apps.fcc.gov/edocs_public/attachmatch/DA-16-307A1.pdf
http://www.xbow.com


27 References 

[5] Traian E Abrudan, Zhuoling Xiao, Andrew Markham, and Niki Trigoni. 
Underground incrementally deployed magneto-inductive 3-d positioning 
network. IEEE Transactions on Geoscience and Remote Sensing, 
54(8):4376–4391, 2016. 

[6] Francesco Adamo, Gregorio Andria, Filippo Attivissimo, and Nicola Giaquinto. 
An acoustic method for soil moisture measurement. IEEE transactions on 
instrumentation and measurement, 53(4):891–898, 2004. 

[7] Talha J Ahmad, Mohamed Noui-Mehidi, and Muhammad Arsalan. 
Performance analysis of downhole acoustic communication in multiphase fow. 
In IECON 2014-40th Annual Conference of the IEEE Industrial Electronics 
Society, pages 3909–3913. IEEE, 2014. 

[8] Mustafa Alper Akka³, Ian F Akyildiz, and Radosveta Sokullu. Terahertz 
channel modeling of underground sensor networks in oil reservoirs. In 2012 
IEEE Global Communications Conference (GLOBECOM), pages 543–548. 
IEEE, 2012. 

[9] I. F. Akyildiz and E. P. Stuntebeck. Wireless underground sensor networks: 
Research challenges. Ad Hoc Networks Journal, July 2006. 

[10] I. F. Akyildiz and E. P. Stuntebeck. Wireless underground sensor networks: 
Research challenges. Ad Hoc Networks Journal (Elsevier), 4:669–686, July 
2006. 

[11] I. F. Akyildiz, Z. Sun, and M. C. Vuran. Signal propagation techniques for 
wireless underground communication networks. Physical Communication 
Journal (Elsevier), 2(3):167–183, Sept. 2009. 

[12] I. F. Akyildiz, Z. Sun, and M. C. Vuran. Signal propagation techniques for 
wireless underground communication networks. Physical Communication 
Journal (Elsevier), 2(3):167–183, Sept. 2009. 

[13] Ian F Akyildiz, Pu Wang, and Shih-Chun Lin. Softwater: Software-defned 
networking for next-generation underwater communication systems. Ad Hoc 
Networks, 46:1–11, 2016. 

[14] Ali Alenezi and Ali Abdi. A comparative study of multichannel and single 
channel accelerometer sensors for communication in oil wells. In 2017 
International Conference on Communication and Signal Processing (ICCSP), 
pages 0153–0153. IEEE, 2017. 

[15] John Algeroy, John Lovell, Gabriel Tirado, Ramaswamy Meyyappan, George 
Brown, Robert Greenaway, Michael Carney, Joerg H Meyer, John E Davies, 
and Ivan D Pinzon. Permanent monitoring: taking it to the reservoir. Oilfeld 
Review, 22(1):34–41, 2010. 

[16] N. Anand, Sung-Ju Lee, and E. W. Knightly. Strobe: Actively securing 
wireless communications using zero-forcing beamforming. In INFOCOM, 
2012 Proceedings IEEE, pages 720–728, March 2012. 

[17] V. Arnautovski-Toseva and L. Grcev. On the image model of a buried horizontal 
wire. IEEE Transactions on Electromagnetic Compatibility, 58(1):278–286, 
February 2016. 

[18] E. Aryafar and et.al. Adam: An adaptive beamforming system for multicasting 
in wireless lans. IEEE/ACM Trans. on Networking, 2013. 



28 1 Introduction to Wireless Underground Communications (WUC) 

[19] Luigi Atzori, Antonio Iera, and Giacomo Morabito. The internet of things: A 
survey. Computer networks, 54(15):2787–2805, 2010. 

[20] S. b. Kim, J. D. Ouellette, J. J. van Zyl, and J. T. Johnson. Detection of inland 
open water surfaces using dual polarization l-band radar for the soil moisture 
active passive mission. IEEE Transactions on Geoscience and Remote Sensing, 
54(6):3388–3399, June 2016. 

[21] Christopher Baldwin. Fiber optic sensors in the oil and gas industry: Current 
and future applications. In Opto-mechanical fber optic sensors, pages 211–236. 
Elsevier, 2018. 

[22] L.K. Bandyopadhyay, S. K. Chaulya, and P. K. Mishra. Wireless 
Communication in Underground Mines: RFID-based Sensor Networking. 
Springer, 2010. 

[23] A. Banos. Dipole radiation in the presence of a conducting halfspace. Pergamon 
Press, 1966. 

[24] J. Behari. Microwave Dielectric Behavior of Wet Soils. Springer, 2005. 
[25] A.O. Bicen, A.B. Sahin, and O.B. Akan. Spectrum-aware underwater networks: 

Cognitive acoustic communications. Vehicular Technology Magazine, IEEE, 
7(2):34–40, June 2012. 

[26] A.W. Biggs. Dipole antenna radiation felds in stratifed antarctic media. 
Antennas and Propagation, IEEE Transactions on, 16(4):445–448, Jul 1968. 

[27] P.P. Bobrov, A.V. Repin, and O.V. Rodionova. Wideband frequency domain 
method of soil dielectric property measurements. Geoscience and Remote 
Sensing, IEEE Transactions on, 53(5):2366–2372, May 2015. 

[28] H. R. Bogena, M. Herbst, J. A. Huisman, U. Rosenbaum, A. Weuthen, and 
H. Vereecken. Potential of wireless sensor networks for measuring soil water 
content variability. Vadose Zone Journal, Nov. 2010. 

[29] H. R. Bogena, J. A. Huismana, H. Meierb, U. Rosenbauma, and A. Weuthena. 
Hybrid wireless underground sensor networks: Quantifcation of signal 
attenuation in soil. Vadose Zone Journal, 8(3):755–761, August 2009. 

[30] H. R. Bogena, J. A. Huismana, H. Meierb, U. Rosenbauma, and A. Weuthena. 
Hybrid wireless underground sensor networks: Quantifcation of signal 
attenuation in soil. Vadose Zone Journal, 8(3):755–761, August 2009. 

[31] HR Bogena, JA Huisman, H Meier, U Rosenbaum, and A Weuthen. Hybrid 
wireless underground sensor networks: Quantifcation of signal attenuation in 
soil. Vadose Zone Journal, 8(3):755–761, 2009. 

[32] K.R. Boyle, Y. Yuan, and L.P. Ligthart. Analysis of mobile phone antenna 
impedance variations with user proximity. IEEE Transaction on Antennas and 
Propagation, 55(2):364–372, Feb. 2007. 

[33] L. M. Brekhovskikh. Waves in Layered Media. Academic Press, New York, 2 
edition, 1980. 

[34] G. Castorina, L. Di Donato, A. F. Morabito, T. Isernia, and G. Sorbello. Analysis 
and design of a concrete embedded antenna for wireless monitoring applications. 
IEEE Antennas and Propagation Magazine, 58(6):76–93, December 2016. 

[35] Liang Chen, Sarang Thombre, Kimmo Järvinen, Elena Simona Lohan, Anette 
Alén-Savikko, Helena Leppäkoski, M Zahidul H Bhuiyan, Shakila Bu-Pasha, 



29 References 

Giorgia Nunzia Ferrara, Salomon Honkala, et al. Robustness, security and 
privacy in location-based services for future iot: A survey. IEEE Access, 
5:8956–8977, 2017. 

[36] A. Chukhlantsev. Microwave Radiometry of Vegetation Canopies. Springer, 
2006. 

[37] J. O. Curtis. A durable laboratory apparatus for the measurement of soil 
dielectric properties. IEEE Transactions on Instrumentation and Measurement, 
50(5):1364–1369, Oct 2001. 

[38] T. Dissanayake, K.P. Esselle, and M.R. Yuce. Dielectric loaded impedance 
matching for wideband implanted antennas. IEEE Transactions on Microwave 
Theory and Techniques, 57(10):2480–2487, Oct. 2009. 

[39] M.C. Dobson and et.al. Microwave dielectric behavior of wet soil—Part II: 
Dielectric mixing models. IEEE Trans. Geoscience and Remote Sensing, 
GE-23(1):35 –46, January 1985. 

[40] S. Dong, A. Yao, and F. Meng. Analysis of an underground horizontal 
electrically small wire antenna. Journal of Electrical and Computer 
Engineering, 2851:9, 2015. 

[41] X. Dong and M. C. Vuran. Impacts of soil moisture on cognitive radio 
underground networks. In Proc. IEEE BlackSeaCom, Georgia, 2013. 

[42] Xin Dong and M. C. Vuran. A channel model for wireless underground sensor 
networks using lateral waves. In Proc. of IEEE Globecom ’11, Houston, TX, 
December 2011. 

[43] Xin Dong, Mehmet C. Vuran, and Suat Irmak. Autonomous precision 
agricultrue through integration of wireless underground sensor networks 
with center pivot irrigation systems. Ad Hoc Networks (Elsevier), 2012. 

[44] Xin Dong, Mehmet C Vuran, and Suat Irmak. Autonomous precision 
agriculture through integration of wireless underground sensor networks 
with center pivot irrigation systems. Ad Hoc Networks, 11(7):1975–1987, 
2013. 

[45] Dan Du, Heng Zhang, Jirg Yang, and Ping Yang. Propagation characteristics 
of the underground-to-aboveground communication link about 2.4 ghz and 
433mhz radio wave: An empirical study in the pine forest of guizhou province. 
In 2017 3rd IEEE International Conference on Computer and Communications 
(ICCC), pages 1041–1045. IEEE, 2017. 

[46] Y. Du and et.al. iBeam: Intelligent client-side multi-user beamforming in 
wireless networks. In IEEE INFOCOM 2014, April 2014. 

[47] David Evans and David M Eyers. Eÿcient data tagging for managing privacy 
in the internet of things. In 2012 IEEE International Conference on Green 
Computing and Communications, pages 244–248. IEEE, 2012. 

[48] R. G. Fitzgerrell and L. L. Haidle. Design and performance of four buried uhf 
antennas. IEEE Trans. Antennas Propagation, 20(1):56–62, 1972. 

[49] H. D. Foth. Fundamentals of Soil Science. John Wiley & Sons, 8 edition, 
1990. 

[50] Trenton E Franz, Ammar Wahbi, Mariette Vreugdenhil, Georg Weltin, Lee 
Heng, Markus Oismueller, Peter Strauss, Gerd Dercon, and Darin Desilets. 



30 1 Introduction to Wireless Underground Communications (WUC) 

Using cosmic-ray neutron probes to monitor landscape scale soil water content 
in mixed land use agricultural systems. Applied and Environmental Soil 
Science, 2016, 2016. 

[51] Rosane Freire, Marco Henrique Meletti de Abreu, Rafael Yuri Okada, 
Paulo Fernando Soares, and Célia Regina GranhenTavares. Sound absorption 
coeÿcient in situ: An alternative for estimating soil loss factors. Ultrasonics 
sonochemistry, 22:100–107, 2015. 

[52] J. Galejs. Antennas in Inhomogeneous Media. Pergamon Press, 1969. 
[53] Oscar Garcia-Morchon, Sye Loong Keoh, Sandeep Kumar, Pedro 

Moreno-Sanchez, Francisco Vidal-Meca, and Jan Henrik Ziegeldorf. Securing 
the ip-based internet of things with hip and dtls. In Proceedings of the sixth 
ACM conference on Security and privacy in wireless and mobile networks, 
pages 119–124, 2013. 

[54] Wallace R Gardner, Ronald E Hyden, Eugene Joseph Linyaev, Li Gao, Carl 
Robbins, Je˙ Moore, et al. Acoustic telemetry delivers more real-time downhole 
data in underbalanced drilling operations. In IADC/SPE Drilling Conference. 
Society of Petroleum Engineers, 2006. 

[55] Mohammad Gharbieh, Hesham ElSawy, Ahmed Bader, and Mohamed-Slim 
Alouini. Spatiotemporal stochastic modeling of iot enabled cellular networks: 
Scalability and stability analysis. IEEE Transactions on Communications, 
65(8):3585–3600, 2017. 

[56] Ehsan Ghazanfari, Sibel Pamukcu, Suk-Un Yoon, Muhannad T Suleiman, and 
Liang Cheng. Geotechnical sensing using electromagnetic attenuation between 
radio transceivers. Smart Materials and Structures, 21(12):125017, 2012. 

[57] K. Gosalia, M.S. Humayun, and G. Lazzi. Impedance matching and 
implementation of planar space-flling dipoles as intraocular implanted 
antennas in a retinal prosthesis. IEEE Transactions on Antennas and 
Propagation, 53(8):2365–2373, Aug. 2005. 

[58] Raka Goyal, Rose Kennedy, Brandon Kelsey, Matthew Whelan, and Kerop 
Janoyan. Underground wireless sensor networks using 2nd generation rf 
transceivers. In Geo-Congress 2014: Geo-characterization and Modeling for 
Sustainability, pages 2619–2629, 2014. 

[59] Hongzhi Guo and Zhi Sun. Channel and energy modeling for self-contained 
wireless sensor networks in oil reservoirs. IEEE Trans. Wireless 
Communications, 13(4):2258–2269, April 2014. 

[60] Hongzhi Guo and Zhi Sun. Full-duplex metamaterial-enabled magnetic 
induction networks in extreme environments. In IEEE INFOCOM 2018-IEEE 
Conference on Computer Communications, pages 558–566. IEEE, 2018. 

[61] Hongzhi Guo, Zhi Sun, and Chi Zhou. Practical design and implementation 
of metamaterial-enhanced magnetic induction communication. IEEE Access, 
5:17213–17229, 2017. 

[62] J. Gutiarrez, J. F. Villa-Medina, A. Nieto-Garibay, and M. A Porta-Gandara. 
Automated irrigation system using a wireless sensor network and gprs module. 
IEEE Transactions on Instrumentation and Measurement, 63(1):166–176, Jan 
2014. 



31 References 

[63] Miguel Angel Gutierrez-Estevez, Udo Krüger, Kirsten A Krueger, Konstantinos 
Manolakis, Volker Jungnickel, Katrin Jaksch, Kai Krueger, Stefan Mikulla, 
Robert Giese, Michael Sohmer, et al. Acoustic broadband communications over 
deep drill strings using adaptive ofdm. In 2013 IEEE Wireless Communications 
and Networking Conference (WCNC), pages 4089–4094. IEEE, 2013. 

[64] Detlef Hahn, Volker Peters, Cedric Rouatbi, and Eckard Scholz. Reciprocating 
pulser for mud pulse telemetry, August 26 2008. US Patent 7,417,920. 

[65] Makrufa S Hajirahimova. Opportunities and challenges big data in oil and gas 
industry. In Proceedings of the National Supercomputer Forum (NSKF 2015), 
Russia, Pereslavl-Zalesskiy, pages 24–27, 2015. 

[66] Wenting Han, Yi Wang, Su K Ooi, and Congcong Guo. Signal transmission 
and node deployment of a 2.4 ghz wireless sensor network: A case study in a 
persimmon orchard. In 2013 Kansas City, Missouri, July 21-July 24, 2013, 
page 1. American Society of Agricultural and Biological Engineers, 2013. 

[67] R. Hansen. Radiation and reception with buried and submerged antennas. 
IEEE Transactions on Antennas and Propagation, 11(3):207–216, May 1963. 

[68] John Harrell, Andrew G Brooks, and Hatem Salem Morsy. Method and 
apparatus for mud pulse telemetry in underbalanced drilling systems, August 1 
2000. US Patent 6,097,310. 

[69] WH Harrison, RL Mazza, LA Rubin, AB Yost, et al. Air-drilling, 
electromagnetic, mwd system development. In SPE/IADC Drilling Conference. 
Society of Petroleum Engineers, 1990. 

[70] Maximo Hernandez, David William MacNeill, Mike Reeves, Andrew D 
Kirkwood, Jonathan Paul Ruszka, Ralf Zaeper, Scott R Lemke, et al. High-speed 
wired drillstring telemetry network delivers increased safety, eÿciency, 
reliability, and productivity to the drilling industry. In SPE Indian Oil and Gas 
Technical Conference and Exhibition. Society of Petroleum Engineers, 2008. 

[71] J. E. Hipp. Soil electromagnetic parameters as functions of frequency, soil 
density, and soil moisture. Proceedings of the IEEE, 62(1):98–103, Jan 1974. 

[72] G. Hislop. Permittivity estimation using coupling of commercial ground 
penetrating radars. IEEE Transactions on Geoscience and Remote Sensing, 
53(8):4157–4164, Aug 2015. 

[73] J. Hopkins. USDA ERS - ARMS farm fnancial and crop production practices: 
Tailored reports: Crop production practicesl. ers.usda.gov,, 2016. Available: 
http://www.ers.usda.gov/data-products/arms-farm-fnancial-and-crop-production-practices/tailored-reports-crop-production-practices.aspx. 

[74] Goran Horvat, Davor Vinko, and Jelena Vlaovi¢. Impact of propagation 
medium on link quality for underwater and underground sensors. In 2016 39th 
International Convention on Information and Communication Technology, 
Electronics and Microelectronics (MIPRO), pages 129–134. IEEE, 2016. 

[75] Huai Huang and Yahong Rosa Zheng. 3-d localization of wireless 
sensor nodes using near-feld magnetic-induction communications. Physical 
Communication, 30:97–106, 2018. 

[76] Qiwei Huang, Xiaotong Zhang, and Jing Ma. Underground magnetic 
localization method and optimization based on simulated annealing algorithm. 
In 2015 IEEE 12th Intl Conf on Ubiquitous Intelligence and Computing and 

http://www.ers.usda.gov/data-products/arms-farm-financial-and-crop-production-practices/tailored-reports-crop-production-practices.aspx
https://ers.usda.gov


32 1 Introduction to Wireless Underground Communications (WUC) 

2015 IEEE 12th Intl Conf on Autonomic and Trusted Computing and 2015 
IEEE 15th Intl Conf on Scalable Computing and Communications and Its 
Associated Workshops (UIC-ATC-ScalCom), pages 168–173. IEEE, 2015. 

[77] S. Huang. An antenna for underground radio communication. Master’s thesis, 
Univeristy of Houston, 1979. 

[78] R Hutin, RW Tennent, SV Kashikar, et al. New mud pulse telemetry techniques 
for deepwater applications and improved real-time data capabilities. In 
SPE/IADC drilling conference. Society of Petroleum Engineers, 2001. 

[79] Remi Hutin. Zero sum pressure drop mud telemetry modulator, January 5 
2016. US Patent 9,228,432. 

[80] K. Iizuka. An experimental investigation on the behavior of the dipole antenna 
near the interface between the conducting medium and free space. IEEE 
Transactions on Antennas and Propagation, 12(1):27–35, Jan. 1964. 

[81] Shan Jiang, Stavros V Georgakopoulos, and Olutola Jonah. Rf power harvesting 
for underground sensors. In Proceedings of the 2012 IEEE International 
Symposium on Antennas and Propagation, pages 1–2. IEEE, 2012. 

[82] Zhao Jianhui, Wang Liyan, Li Fan, and Liu Yanlei. An e˙ective approach for 
the noise removal of mud pulse telemetry system. In 2007 8th International 
Conference on Electronic Measurement and Instruments, pages 1–971. IEEE, 
2007. 

[83] F. Jonard, L. Weihermüller, M. Schwank, K. Z. Jadoon, H. Vereecken, 
and S. Lambot. Estimation of hydraulic properties of a sandy soil using 
ground-based active and passive microwave remote sensing. IEEE Transactions 
on Geoscience and Remote Sensing, 53(6):3095–3109, June 2015. 

[84] ZhiQiang Kang, Yang Yu, and ChunHua Hou. Study on stress and strain 
and characteristics of acoustic emission in the process of rock failure. In 
2011 Second International Conference on Mechanic Automation and Control 
Engineering, pages 7737–7740. IEEE, 2011. 

[85] Gareth A Kennedy and Patrick J Foster. High resilience networks and 
microwave propagation in underground mines. In 2006 European Conference 
on Wireless Technology, pages 193–196. IEEE, 2006. 

[86] Alan D Kersey. Optical fber sensors for permanent downwell monitoring 
applications in the oil and gas industry. IEICE transactions on electronics, 
83(3):400–404, 2000. 

[87] A. S. Kesar and E. Weiss. Wave propagation between buried antennas. IEEE 
Transactions on Antennas and Propagation, 61(12):6152–6156, December 
2013. 

[88] Umar S Khan, Waleed Al-Nuaimy, and Fathi E Abd El-Samie. Detection 
of landmines and underground utilities from acoustic and gpr images with a 
cepstral approach. Journal of Visual Communication and Image Representation, 
21(7):731–740, 2010. 

[89] Y. Kim, R. G. Evans, and W. M. Iversen. Remote sensing and control 
of an irrigation system using a distributed wireless sensor network. IEEE 
Transactions on Instrumentation and Measurement, 57(7):1379–1387, July 
2008. 



33 References 

[90] R. King, G. S. Smith, M. Owens, and T. T. Wu. Antennas in Matter -
Fundamentals, Theory, and Applications. MIT Press, 1981. 

[91] R. W. P. King, Margaret Owens, and Tai Tsun Wu. Lateral Electromagnetic 
Waves. Springer-Verlag, May 1992. 

[92] R. W. P. King and G. Smith. Antennas in Matter. MIT Press, 1981. 
[93] S. Kissele˙, I. F. Akyildiz, and W. Gerstacker. Beamforming for magnetic 

induction based wireless power transfer systems with multiple receivers. In 
2015 IEEE GLOBECOM, Dec 2015. 

[94] S. Kissele˙, I.F. Akyildiz, and W.H. Gerstacker. Digital signal transmission in 
magnetic induction based wireless underground sensor networks. IEEE Trans. 
Communications, 63(6):2300–2311, June 2015. 

[95] Steven Kissele˙, Ian F Akyildiz, and W Gerstacker. Interference polarization 
in magnetic induction based wireless underground sensor networks. In 2013 
IEEE 24th International Symposium on Personal, Indoor and Mobile Radio 
Communications (PIMRC Workshops), pages 71–75. IEEE, 2013. 

[96] Steven Kissele˙, Ian F Akyildiz, and Wolfgang H Gerstacker. Digital 
signal transmission in magnetic induction based wireless underground sensor 
networks. IEEE Transactions on Communications, 63(6):2300–2311, 2015. 

[97] Steven Kissele˙, Ian F Akyildiz, and Wolfgang H Gerstacker. Survey on 
advances in magnetic induction-based wireless underground sensor networks. 
IEEE Internet of Things Journal, 5(6):4843–4856, 2018. 

[98] Steven Kissele˙, Xi Chen, Ian F Akyildiz, and W Gerstacker. Localization of 
a silent target node in magnetic induction based wireless underground sensor 
networks. In 2017 IEEE International Conference on Communications (ICC), 
pages 1–7. IEEE, 2017. 

[99] Steven Kissele˙, W Gerstacker, Zhi Sun, and Ian F Akyildiz. On the throughput 
of wireless underground sensor networks using magneto-inductive waveguides. 
In 2013 IEEE Global Communications Conference (GLOBECOM), pages 
322–328. IEEE, 2013. 

[100] Steven Kissele˙, B Sackenreuter, Ian F Akyildiz, and W Gerstacker. On 
capacity of active relaying in magnetic induction based wireless underground 
sensor networks. In 2015 IEEE International Conference on Communications 
(ICC), pages 6541–6546. IEEE, 2015. 

[101] Christian Klotz, Paul Richard Bond, Ingolf Wassermann, Stefan Priegnitz, 
et al. A new mud pulse telemetry system for enhanced mwd/lwd applications. 
In IADC/SPE drilling conference. Society of Petroleum Engineers, 2008. 

[102] Hikaru Koike and Yukihiro Kamiya. A new approach for subsurface wireless 
sensor networks. In Intelligent Interactive Multimedia Systems and Services 
2016, pages 201–211. Springer, 2016. 

[103] Abhiteja Konda, Advaith Rau, Michael A. Stoller, Jay M. Taylor, Abdul 
Salam, Gabriel A. Pribil, Christos Argyropoulos, and Stephen A. Morin. 
Soft microreactors for the deposition of conductive metallic traces on 
planar, embossed, and curved surfaces. Advanced Functional Materials, 
28(40):1803020, 2018. 



34 1 Introduction to Wireless Underground Communications (WUC) 

[104] Tor K Kragas, Brock A Williams, Gregory A Myers, et al. The optic oil feld: 
deployment and application of permanent in-well fber optic sensing systems 
for production and reservoir monitoring. In SPE Annual Technical Conference 
and Exhibition. Society of Petroleum Engineers, 2001. 

[105] Akshay Kulkarni, Vinay Kumar, and Sanjay B Dhok. Enabling technologies 
for range enhancement of mi based wireless non-conventional media 
communication. In 2018 9th International Conference on Computing, 
Communication and Networking Technologies (ICCCNT), pages 1–7. IEEE, 
2018. 

[106] S. Lakshmanan, K. Sundaresan, R. Kokku, A. Khojestepour, and S. Rangarajan. 
Towards adaptive beamforming in indoor wireless networks: An experimental 
approach. In INFOCOM 2009, IEEE, April 2009. 

[107] Mo Li and Yunhao Liu. Underground structure monitoring with wireless sensor 
networks. In 2007 6th International Symposium on Information Processing in 
Sensor Networks, pages 69–78. IEEE, 2007. 

[108] S. Lin, I.F. Akyildiz, P. Wang, and Z. Sun. Distributed cross-layer protocol 
design for magnetic induction communication in wireless underground sensor 
networks. Wireless Communications, IEEE Transactions on, 14(7):4006–4019, 
July 2015. 

[109] Shih-Chun Lin, Ian F Akyildiz, Pu Wang, and Zhi Sun. Optimal 
energy-throughput eÿciency for magneto-inductive underground sensor 
networks. In 2014 IEEE International Black Sea Conference on 
Communications and Networking (BlackSeaCom), pages 22–27. IEEE, 2014. 

[110] Shih-Chun Lin, Ian F Akyildiz, Pu Wang, and Zhi Sun. Distributed 
cross-layer protocol design for magnetic induction communication in wireless 
underground sensor networks. IEEE Transactions on Wireless Communications, 
14(7):4006–4019, 2015. 

[111] Shih-Chun Lin, Abdallah Awadh Alshehri, Pu Wang, and Ian F 
Akyildiz. Magnetic induction-based localization in randomly deployed 
wireless underground sensor networks. IEEE Internet of Things Journal, 
4(5):1454–1465, 2017. 

[112] Yuanhua Lin, Xiangwei Kong, Y¼ie Qiu, and Q¼i Yuan. Calculation analysis 
of pressure wave velocity in gas and drilling mud two-phase fuid in annulus 
during drilling operations. Mathematical Problems in Engineering, 2013, 
2013. 

[113] Diansong Luo, Tie Qiu, Nakema Deonauth, and Aoyang Zhao. A small world 
model for improving robustness of heterogeneous networks. In 2015 IEEE 
Global Conference on Signal and Information Processing (GlobalSIP), pages 
849–852. IEEE, 2015. 

[114] R Je˙rey Lytle. Measurement of earth medium electrical characteristics: 
Techniques, results, and applications. IEEE Transactions on Geoscience 
Electronics, 12(3):81–101, 1974. 

[115] R Je˙rey Lytle and Darrel L Lager. The yosemite experiments: Hf propagation 
through rock. Radio Science, 11(4):245–252, 1976. 



35 References 

[116] Dong Ma, Yibing Shi, Wei Zhang, and Guozhen Liu. Design of acoustic 
transmission along drill strings for logging while drilling data based on adaptive 
nc-ofdm. AEU-International Journal of Electronics and Communications, 
83:329–338, 2018. 

[117] Jing Ma, XiaoTong Zhang, and QiWei Huang. Near-feld magnetic induction 
communication device for underground wireless communication networks. 
Science China Information Sciences, 57(12):1–11, 2014. 

[118] Jing Ma, Xiaotong Zhang, Qiwei Huang, Liang Cheng, and Mingyu Lu. 
Experimental study on the impact of soil conductivity on underground 
magneto-inductive channel. IEEE Antennas and Wireless Propagation Letters, 
14:1782–1785, 2015. 

[119] Andrew Markham and Niki Trigoni. Magneto-inductive networked rescue 
system (miners): Taking sensor networks underground. In Proceedings of the 
11th ICPS, IPSN ’12, pages 317–328. ACM, 2012. 

[120] Andrew Markham and Niki Trigoni. Magneto-inductive networked rescue 
system (miners) taking sensor networks underground. In Proceedings of the 
11th international conference on Information Processing in Sensor Networks, 
pages 317–328, 2012. 

[121] Andrew Markham, Niki Trigoni, Stephen A Ellwood, and David W Macdonald. 
Revealing the hidden lives of underground animals using magneto-inductive 
tracking. In Proceedings of the 8th ACM Conference on Embedded Networked 
Sensor Systems, pages 281–294, 2010. 

[122] Andrew Markham, Niki Trigoni, David W Macdonald, and Stephen A Ellwood. 
Underground localization in 3-d using magneto-inductive tracking. IEEE 
Sensors Journal, 12(6):1809–1816, 2011. 

[123] John McCulloch, Paul McCarthy, Siddeswara Mayura Guru, Wei Peng, Daniel 
Hugo, and Andrew Terhorst. Wireless sensor network deployment for water 
use eÿciency in irrigation. In Proceedings of the workshop on Real-world 
wireless sensor networks, pages 46–50, 2008. 

[124] Rito M¼arez, David Pascacio, Ricardo Guevara, Olimpia Pacheco, Carlos 
Tello, and Joaquín Rodríguez. Communication system for down-hole 
measurement tools based on real-time snr characterization in coaxial cable 
used as communication channel. Additional Papers and Presentations, 
2013(HITEN):000174–000183, 2013. 

[125] PK Mishra, Manish Kumar, Subhash Kumar, PK Mandal, et al. Wireless 
real-time sensing platform using vibrating wire-based geotechnical sensor for 
underground coal mines. Sensors and Actuators A: Physical, 269:212–217, 
2018. 

[126] R. K. Moore and W. E. Blair. Dipole radiation in conducting half space. 
Journal of Res National Bureau of Standard, 65, 1961. 

[127] Lalatendu Muduli, Devi Prasad Mishra, and Prasanta K Jana. Application of 
wireless sensor network for environmental monitoring in underground coal 
mines: A systematic review. Journal of Network and Computer Applications, 
106:48–67, 2018. 



36 1 Introduction to Wireless Underground Communications (WUC) 

[128] E. M. Nassar, R. Lee, and J. D. Young. A probe antenna for in situ measurement 
of the complex dielectric constant of materials. IEEE Transactions on Antennas 
and Propagation, 47(6):1085–1093, Jun 1999. 

[129] Neha K Nawandar and Vishal R Satpute. Iot based low cost and intelligent 
module for smart irrigation system. Computers and Electronics in Agriculture, 
162:979–990, 2019. 

[130] James Michael Ne˙ and Paul Leonard Camwell. Field test results of an acoustic 
telemetry mwd system. In SPEIADC drilling conference. Society of Petroleum 
Engineers, 2007. 

[131] A. M. Nicolson and G. F. Ross. Measurement of the intrinsic properties of 
materials by time-domain techniques. IEEE Transactions on Instrumentation 
and Measurement, 19(4):377–382, Nov 1970. 

[132] Stefanos A Nikolidakis, Dionisis Kandris, Dimitrios D Vergados, and Christos 
Douligeris. Energy eÿcient automated control of irrigation in agriculture by 
using wireless sensor networks. Computers and Electronics in Agriculture, 
113:154–163, 2015. 

[133] T. Nitsche and et.al. Steering with eyes closed: Mm-wave beam steering 
without in-band measurement. In IEEE INFOCOM, April 2015. 

[134] K. A. Norton. The physical reality of space and surface waves in the radiation 
feld of radio antennas. In Proceedings of the Institute of Radio Engineers, 
pages 1192–1202, no. 9, September 1937. vol. 25. 

[135] Michael L Oelze, William D O’Brien, and Robert G Darmody. Measurement 
of attenuation and speed of sound in soils. Soil Science Society of America 
Journal, 66(3):788–796, 2002. 

[136] G Parameswaran and K Sivaprasath. Arduino based smart drip irrigation 
system using internet of things. International Journal of Engineering Science, 
5518, 2016. 

[137] Vinod Parameswaran, Hong Zhou, and Zhongwei Zhang. Irrigation control 
using wireless underground sensor networks. In 2012 Sixth International 
Conference on Sensing Technology (ICST), pages 653–659. IEEE, 2012. 

[138] Vinod Parameswaran, Hong Zhou, and Zhongwei Zhang. Wireless underground 
sensor network design for irrigation control: Simulation of rfd deployment. In 
2013 Seventh International Conference on Sensing Technology (ICST), pages 
842–849. IEEE, 2013. 

[139] Vivek Pathak, Vinay Kumar, and Rabindra K Barik. Magnetic induction 
communication based transceiver coil and waveguide structure modeling for 
non-conventional wsns. In 2018 9th International Conference on Computing, 
Communication and Networking Technologies (ICCCNT), pages 1–7. IEEE, 
2018. 

[140] Konstantinos Pelekanakis, Mandar Chitre, Lakshmi Sutha Kumar, and 
Yong Liang Guan. Performance of channel coding and equalization for 
acoustic telemetry along drill strings. In 2014 IEEE International Conference 
on Communication Systems, pages 610–614. IEEE, 2014. 



37 References 

[141] N. Peplinski, F. Ulaby, and M. Dobson. Dielectric properties of soil in the 
0.3–1.3 ghz range. IEEE Transactions on Geoscience and Remote Sensing, 
33(3):803–807, May 1995. 

[142] N. Peplinski, F. Ulaby, and M. Dobson. Dielectric properties of soils 
in the 0.3-1.3-ghz range. IEEE Trans. Geoscience and Remote Sensing, 
33(3):803–807, May 1995. 

[143] Charith Perera, Arkady Zaslavsky, Peter Christen, and Dimitrios 
Georgakopoulos. Context aware computing for the internet of things: A 
survey. IEEE communications surveys & tutorials, 16(1):414–454, 2013. 

[144] Robert K Perrons and Adam Hems. Cloud computing in the upstream oil & 
gas industry: A proposed way forward. Energy Policy, 56:732–737, 2013. 

[145] D. Pompili and I.F. Akyildiz. Overview of networking protocols for underwater 
wireless communications. IEEE Communications Magazine, 47(1):97–102, 
January 2009. 

[146] J. Powell and A. Chandrakasan. Di˙erential and single ended elliptical antennas 
for 3.1-10.6 Ghz ultra wideband communication. In Antennas and Propagation 
Society International Symposium, volume 2, Sendai, Japan, August 2004. 

[147] Bernhard Prevedel, Fatih Bulut, Marco Bohnho˙, Christina Raub, Recai F 
Kartal, Fatih Alver, and Peter E Malin. Downhole geophysical observatories: 
Best installation practices and a case history from turkey. International Journal 
of Earth Sciences, 104(6):1537–1547, 2015. 

[148] Jesús Antonio Puente Fernández, Luis Javier García Villalba, and Tai-Hoon 
Kim. Software defned networks in wireless sensor architectures. Entropy, 
20(4):225, 2018. 

[149] Fengzhong Qu, Zhujun Zhang, Junwei Hu, Jiangming Xu, Shiyuan Wang, and 
Yezhou Wu. Adaptive dual-sensor noise cancellation method for continuous 
wave mud pulse telemetry. Journal of Petroleum Science and Engineering, 
162:386–393, 2018. 

[150] F. Quitin and et.al. A scalable architecture for distributed transmit beamforming 
with commodity radios: Design and proof of concept. IEEE Trans. on Wireless 
Communications, March 2013. 

[151] Alok Ranjan, HB Sahu, and Prasant Misra. Modeling and measurements 
for wireless communication networks in underground mine environments. 
Measurement, 149:106980, 2020. 

[152] Hanno Reckmann. Downhole noise cancellation in mud-pulse telemetry, 
August 19 2014. US Patent 8,811,118. 

[153] C. J. Ritsema, H. Kuipers, L. Kleiboer, E. Elsen, K. Oostindie, J. G. Wesseling, 
J. Wolthuis, and P. Havinga. A new wireless underground network system 
for continuous monitoring of soil water contents. Water Resources Research 
Journal, 45:1–9, May 2009. 

[154] Rodrigo Roman, Pablo Najera, and Javier Lopez. Securing the internet of 
things. Computer, 44(9):51–58, 2011. 

[155] Nasir Saeed, Tareq Y Al-Na˙ouri, and Mohamed-Slim Alouini. Towards 
the internet of underground things: A systematic survey. arXiv preprint 
arXiv:1902.03844, 2019. 



38 1 Introduction to Wireless Underground Communications (WUC) 

[156] Nasir Saeed, Mohamed-Slim Alouini, and Tareq Y Al-Na˙ouri. On achievable 
accuracy of localization in magnetic induction-based internet of underground 
things for oil and gas reservoirs. arXiv preprint arXiv:1901.09556, 2019. 

[157] Nasir Saeed, Mohamed-Slim Alouini, and Tareq Y Al-Na˙ouri. Toward the 
internet of underground things: A systematic survey. IEEE Communications 
Surveys & Tutorials, 21(4):3443–3466, 2019. 

[158] A. Salam and M. C. Vuran. Em-based wireless underground sensor networks. 
In Sibel Pamukcu and Liang Cheng, editors, Underground Sensing: Monitoring 
and hazard detection for environment and infrastructure - 1st edition, chapter 5. 
Elsevier, 2017. 

[159] A. Salam and Mehmet C. Vuran. Impacts of soil type and moisture on the 
capacity of multi-carrier modulation in internet of underground things. In 
Proc. of the 25th ICCCN 2016, Waikoloa, Hawaii, USA, Aug 2016. 

[160] A. Salam and Mehmet C. Vuran. Impacts of soil type and moisture on the 
capacity of multi-carrier modulation in internet of underground things. In 
Proc. ICCCN 2016, Waikoloa, Hawaii, USA, Aug 2016. 

[161] A. Salam and Mehmet C. Vuran. Em-based wireless underground sensor 
networks. pages 247–285, 2017. 

[162] Abdul Salam. A comparison of path loss variations in soil using planar and 
dipole antennas. In 2019 IEEE International Symposium on Antennas and 
Propagation. IEEE, Jul 2019. 

[163] Abdul Salam. Design of subsurface phased array antennas for digital agriculture 
applications. In Proc. 2019 IEEE International Symposium on Phased Array 
Systems and Technology (IEEE Array 2019), Waltham, MA, USA, October 
2019. 

[164] Abdul Salam. A path loss model for through the soil wireless communications 
in digital agriculture. In 2019 IEEE International Symposium on Antennas 
and Propagation, pages 1–2. IEEE, Jul 2019. 

[165] Abdul Salam. Sensor-free underground soil sensing. In ASA, CSSA and SSSA 
International Annual Meetings (2019). ASA-CSSA-SSSA, 2019. 

[166] Abdul Salam. Subsurface mimo: A beamforming design in internet of 
underground things for digital agriculture applications. Journal of Sensor and 
Actuator Networks, 8(3), 2019. 

[167] Abdul Salam. Underground Environment Aware MIMO Design Using Transmit 
and Receive Beamforming in Internet of Underground Things, pages 1–15. 
Springer International Publishing, Cham, 2019. 

[168] Abdul Salam. An underground radio wave propagation prediction model for 
digital agriculture. Information, 10(4), 2019. 

[169] Abdul Salam. An underground radio wave propagation prediction model for 
digital agriculture. Information, 10(4):147, 2019. 

[170] Abdul Salam. Underground soil sensing using subsurface radio wave 
propagation. In 5th Global Workshop on Proximal Soil Sensing, Columbia, 
MO, May 2019. 

[171] Abdul Salam. Internet of Things for Environmental Sustainability and Climate 
Change, pages 33–69. Springer International Publishing, Cham, 2020. 



39 References 

[172] Abdul Salam. Internet of Things for Sustainability: Perspectives in Privacy, 
Cybersecurity, and Future Trends, pages 299–327. Springer International 
Publishing, Cham, 2020. 

[173] Abdul Salam. Internet of Things for Sustainable Community Development. 
Springer Nature, 1 edition, 2020. 

[174] Abdul Salam. Internet of Things for Sustainable Community Development: 
Introduction and Overview, pages 1–31. Springer International Publishing, 
Cham, 2020. 

[175] Abdul Salam. Internet of Things for Sustainable Forestry, pages 147–181. 
Springer International Publishing, Cham, 2020. 

[176] Abdul Salam. Internet of Things for Sustainable Human Health, pages 217–242. 
Springer International Publishing, Cham, 2020. 

[177] Abdul Salam. Internet of Things for Sustainable Mining, pages 243–271. 
Springer International Publishing, Cham, 2020. 

[178] Abdul Salam. Internet of Things for Water Sustainability, pages 113–145. 
Springer International Publishing, Cham, 2020. 

[179] Abdul Salam. Internet of Things in Agricultural Innovation and Security, pages 
71–112. Springer International Publishing, Cham, 2020. 

[180] Abdul Salam. Internet of Things in Sustainable Energy Systems, pages 183–216. 
Springer International Publishing, Cham, 2020. 

[181] Abdul Salam. Internet of Things in Water Management and Treatment, pages 
273–298. Springer International Publishing, Cham, 2020. 

[182] Abdul Salam. Wireless underground communications in sewer and stormwater 
overfow monitoring: Radio waves through soil and asphalt medium. 
Information, 11(2), 2020. 

[183] Abdul Salam, Anh Duy Hoang, Atluri Meghna, Dylan R Martin, Gabriel 
Guzman, Yung Han Yoon, Jacob Carlson, Jordan Kramer, Keim Yansi, 
Michael Kelly, et al. The future of emerging iot paradigms: Architectures and 
technologies. 2019. 

[184] Abdul Salam and Umit Karabiyik. A cooperative overlay approach at the 
physical layer of cognitive radio for digital agriculture. In Third International 
Balkan Conference on Communications and Networking 2019 (BalkanCom’19), 
Skopje, Macedonia, the former Yugoslav Republic of, June 2019. 

[185] Abdul Salam and Umit Karabiyik. A cooperative overlay approach at the 
physical layer of cognitive radio for digital agriculture. 2019. 

[186] Abdul Salam and Syed Shah. Internet of things in smart agriculture: Enabling 
technologies. In 2019 IEEE 5th World Forum on Internet of Things (WF-IoT), 
pages 692–695. IEEE, 2019. 

[187] Abdul Salam and Mehmet C Vuran. Impacts of soil type and moisture on the 
capacity of multi-carrier modulation in internet of underground things. In 2016 
25th International Conference on Computer Communication and Networks 
(ICCCN), pages 1–9. IEEE, 2016. 

[188] Abdul Salam and Mehmet C Vuran. Smart underground antenna arrays: A soil 
moisture adaptive beamforming approach. In IEEE INFOCOM 2017-IEEE 
Conference on Computer Communications, pages 1–9. IEEE, 2017. 



40 1 Introduction to Wireless Underground Communications (WUC) 

[189] Abdul Salam and Mehmet C Vuran. Wireless underground channel diversity 
reception with multiple antennas for internet of underground things. In 2017 
IEEE International Conference on Communications (ICC), pages 1–7. IEEE, 
2017. 

[190] Abdul Salam, Mehmet C Vuran, Xin Dong, Christos Argyropoulos, and Suat 
Irmak. A theoretical model of underground dipole antennas for communications 
in internet of underground things. IEEE Transactions on Antennas and 
Propagation, 2019. 

[191] Abdul Salam, Mehmet C Vuran, and Suat Irmak. Pulses in the sand: 
Impulse response analysis of wireless underground channel. In IEEE 
INFOCOM 2016-The 35th Annual IEEE International Conference on Computer 
Communications, pages 1–9. IEEE, 2016. 

[192] Abdul Salam, Mehmet C. Vuran, and Suat Irmak. Di-sense: In situ real-time 
permittivity estimation and soil moisture sensing using wireless underground 
communications. Computer Networks, 151:31 – 41, 2019. 

[193] Abdul Salam and Mehmet Can Vuran. Smart underground antenna arrays: A 
soil moisture adaptive beamforming approach. In Proc. 36th IEEE INFOCOM 
2017, Atlanta, USA, May 2017. 

[194] Abdul Salam and Mehmet Can Vuran. Smart underground antenna arrays: 
A soil moisture adaptive beamforming approach. In Proc. IEEE INFOCOM 
2017, Atlanta, USA, May 2017. 

[195] Abdul Salam and Mehmet Can Vuran. Wireless underground channel diversity 
reception with multiple antennas for internet of underground things. In Proc. 
IEEE ICC 2017, Paris, France, May 2017. 

[196] Abdul Salam and Mehmet Can Vuran. Wireless underground channel diversity 
reception with multiple antennas for internet of underground things. In Proc. 
IEEE ICC 2017, Paris, France, May 2017. 

[197] Abdul Salam, Mehmet Can Vuran, and Suat Irmak. Pulses in the sand: Impulse 
response analysis of wireless underground channel. In Proc. IEEE INFOCOM 
2016, San Francisco, USA, April 2016. 

[198] Abdul Salam, Mehmet Can Vuran, and Suat Irmak. Pulses in the sand: Impulse 
response analysis of wireless underground channel. In The 35th Annual IEEE 
International Conference on Computer Communications (INFOCOM 2016), 
San Francisco, USA, April 2016. 

[199] Abdul Salam, Mehmet Can Vuran, and Suat Irmak. Towards internet 
of underground things in smart lighting: A statistical model of wireless 
underground channel. In Proc. 14th IEEE International Conference on 
Networking, Sensing and Control (IEEE ICNSC), Calabria, Italy, May 2017. 

[200] Abdul Salam, Mehmet Can Vuran, and Suat Irmak. Towards internet 
of underground things in smart lighting: A statistical model of wireless 
underground channel. In Proc. 14th IEEE International Conference on 
Networking, Sensing and Control (IEEE ICNSC), Calabria, Italy, May 2017. 

[201] Jochen Schnitger, John Duncan Macpherson, et al. Signal attenuation for 
electromagnetic telemetry systems. In SPE/IADC Drilling Conference and 
Exhibition. Society of Petroleum Engineers, 2009. 



41 References 

[202] Robert J Schroeder. The present and future of fber optic sensors for the oilfeld 
service industry: where is there a role? In 2002 15th Optical Fiber Sensors 
Conference Technical Digest. OFS 2002 (Cat. No. 02EX533), pages 39–42. 
IEEE, 2002. 

[203] RK Sharma and AK Gupta. Continuous wave acoustic method for determination 
of moisture content in agricultural soil. Computers and electronics in 
agriculture, 73(2):105–111, 2010. 

[204] Sabrina Sicari, Alessandra Rizzardi, Luigi Alfredo Grieco, and Alberto 
Coen-Porisini. Security, privacy and trust in internet of things: The road ahead. 
Computer networks, 76:146–164, 2015. 

[205] A. R. Silva and M. C. Vuran. Empirical evaluation of wireless 
underground-to-underground communication in wireless underground sensor 
networks. In Proc. IEEE DCOSS ’09, Marina Del Rey, CA, June 2009. 

[206] A. R. Silva and M. C. Vuran. Channel contention in wireless underground sensor 
networks. In to appear in Proc. III Intl. Conf. on Wireless Communications in 
Underground and Confned Areas (ICWCUCA’ 10), Val-d, Canada, August 
2010. 

[207] A. R. Silva and M. C. Vuran. Communication with aboveground devices in 
wireless underground sensor networks: An empirical study. In to appear in 
Proc. IEEE ICC ’10, Cape Town, South Africa, May 2010. 

[208] A. R. Silva and M. C. Vuran. Communication with aboveground devices in 
wireless underground sensor networks: An empirical study. In Proc. of IEEE 
ICC’10, pages 1–6, Cape Town, South Africa, May 2010. 

[209] A. R. Silva and M. C. Vuran. Development of a Testbed for 
Wireless Underground Sensor Networks. EURASIP Journal on Wireless 
Communications and Networking, 2010. 

[210] Agnelo R Silva. Channel characterization for wireless underground sensor 
networks. Master’s thesis, University of Nebraska-Lincoln, 2010. 

[211] Agnelo R Silva and Mahta Moghaddam. Design and implementation of 
low-power and mid-range magnetic-induction-based wireless underground 
sensor networks. IEEE Transactions on Instrumentation and Measurement, 
65(4):821–835, 2015. 

[212] Agnelo R. Silva and Mehmet C. Vuran. Empirical evaluation of wireless 
underground-to-underground communication in wireless underground sensor 
networks. In Proc. of IEEE DCOSS ’09, pages 231–244, Marina del Rey, CA, 
June 2009. 

[213] Agnelo R Silva and Mehmet C Vuran. Empirical evaluation of wireless 
underground-to-underground communication in wireless underground sensor 
networks. In International Conference on Distributed Computing in Sensor 
Systems, pages 231–244. Springer, 2009. 

[214] Agnelo R. Silva and Mehmet C. Vuran. (CPS)2: integration of center pivot 
systems with wireless underground sensor networks for autonomous precision 
agriculture. In Proc. of ACM/IEEE International Conf. on Cyber-Physical 
Systems, pages 79–88, Stockholm, Sweden, April 2010. 



42 1 Introduction to Wireless Underground Communications (WUC) 

[215] Agnelo R Silva and Mehmet C Vuran. Development of a testbed for wireless 
underground sensor networks. EURASIP Journal on Wireless Communications 
and Networking, 2010:1–14, 2010. 

[216] Andrew Singer, S¼ung Yang, and Michael Oelze. Acoustic communications: 
Through soils, sands, water, and tissue. The Journal of the Acoustical Society 
of America, 141(5):3986–3987, 2017. 

[217] K. Sivaprasad and R.W.P. King. A study of arrays of dipoles in a semi-infnite 
dissipative medium. Antennas and Propagation, IEEE Transactions on, 
11(3):240–256, May 1963. 

[218] K Sivaprasad and Kerwin C Stotz. Refection of electromagnetic pulses 
from a multilayered medium. IEEE Transactions on Geoscience Electronics, 
11(3):161–164, 1973. 

[219] E. E. Small, K. M. Larson, C. C. Chew, J. Dong, and T. E. Ochsner. Validation 
of gps-ir soil moisture retrievals: Comparison of di˙erent algorithms to 
remove vegetation e˙ects. IEEE Journal of Selected Topics in Applied Earth 
Observations and Remote Sensing, 9(10):4759–4770, Oct 2016. 

[220] G. Smith and J. Nordgard. Measurement of the electrical constitutive parameters 
of materials using antennas. IEEE Transactions on Antennas and Propagation, 
33(7):783–792, Jul 1985. 

[221] Glenn S. Smith and Ronold W. P. King. The resonant linear antenna as a probe 
for measuring the in situ electrical properties of geological media. Journal of 
Geophysical Research, 79(17):2623–2628, 1974. 

[222] R. Solimene, A. D’Alterio, G. Gennarelli, and F. Soldovieri. Estimation of soil 
permittivity in presence of antenna-soil interactions. IEEE Journal of Selected 
Topics in Applied Earth Observations and Remote Sensing, 7(3):805–812, 
March 2014. 

[223] A. Sommerfeld. ”uber die ausbreitung der wellen in der drahtlosen telegraphie”. 
in. Ann. Phys, 28:665–737, 1909. 

[224] E. Stuntebeck, D. Pompili, and T. Melodia. Underground wireless sensor 
networks using commodity terrestrial motes. In poster presentation at IEEE 
SECON 2006, Reston, USA, September 2006. 

[225] Daobilige Su, Jaime Valls Miro, and Teresa Vidal-Calleja. Modelling in-pipe 
acoustic signal propagation for condition assessment of multi-layer water 
pipelines. In 2015 IEEE 10th Conference on Industrial Electronics and 
Applications (ICIEA), pages 545–550. IEEE, 2015. 

[226] S Suherman, A Rambe, and A Tanjung. Underground radio propagation on 
frequency band 97 mhz–130 mhz. Int. J. Eng. Technol., 7(3):722–726, 2018. 

[227] Liying Sun and Yibo Li. Acoustic emission sound source localization for crack 
in the pipeline. In 2010 Chinese Control and Decision Conference, pages 
4298–4301. IEEE, 2010. 

[228] Zhi Sun and Ian F Akyildiz. Underground wireless communication 
using magnetic induction. In 2009 IEEE International Conference on 
Communications, pages 1–5. IEEE, 2009. 



43 References 

[229] Zhi Sun and Ian F Akyildiz. Magnetic induction communications for wireless 
underground sensor networks. IEEE transactions on antennas and propagation, 
58(7):2426–2435, 2010. 

[230] Zhi Sun and Ian F Akyildiz. Optimal deployment for magnetic induction-based 
wireless networks in challenged environments. IEEE transactions on wireless 
communications, 12(3):996–1005, 2013. 

[231] Zhi Sun and I.F. Akyildiz. Channel modeling and analysis for wireless networks 
in underground mines and road tunnels. IEEE Trans. on Communications, 
June 2010. 

[232] Zhi Sun and I.F. Akyildiz. Magnetic induction communications for wireless 
underground sensor networks. Antennas and Propagation, IEEE Transactions 
on, 58(7):2426–2435, July 2010. 

[233] Zhi Sun, I.F. Akyildiz, S. Kissele˙, and W. Gerstacker. Increasing the capacity 
of magnetic induction communications in rf-challenged environments. IEEE 
Trans. Communications, 61(9):3943–3952, September 2013. 

[234] Zhi Sun and et.al. MISE-PIPE: MI based wireless sensor networks for 
underground pipeline monitoring. Ad Hoc Networks, 2011. 

[235] Zhi Sun, Pu Wang, Mehmet C. Vuran, Mznah A. Al-Rodhaan, Abdullah M. 
Al-Dhelaan, and Ian F. Akyildiz. Border patrol through advanced wireless 
sensor networks. Ad Hoc Networks, 9(3):468–477, 2011. 

[236] S Swathi and Sakthivel Murugan Santhanam. An eÿcient mi waveguide based 
underground wireless communication for smart irrigation. In 2017 14th IEEE 
India Council International Conference (INDICON), pages 1–6. IEEE, 2017. 

[237] C. T. Tai and R. E. Collin. Radiation of a hertzian dipole immersed in 
a dissipative medium. IEEE Transactions on Antennas and Propagation, 
48(10):1501–1506, 2000. 

[238] X. Tan, Z. Sun, and I. F. Akyildiz. Wireless underground sensor networks: 
Mi-based communication systems for underground applications. IEEE 
Antennas and Propagation Magazine, 57(4):74–87, Aug 2015. 

[239] Xin Tan, Zhi Sun, and Ian F Akyildiz. Wireless underground sensor networks: 
Mi-based communication systems for underground applications. IEEE 
Antennas and Propagation Magazine, 57(4):74–87, 2015. 

[240] Xin Tan, Zhi Sun, Pu Wang, and Yanjing Sun. Environment-aware localization 
for wireless sensor networks using magnetic induction. Ad Hoc Networks, 
98:102030, 2020. 

[241] Samil Temel, Mehmet C Vuran, Mohammad MR Lunar, Zhongyuan Zhao, 
Abdul Salam, Ronald K Faller, and Cody Stolle. Vehicle-to-barrier 
communication during real-world vehicle crash tests. Computer 
Communications, 127:172–186, 2018. 

[242] M. J. Tiusanen. Attenuation of a Soil Scout radio signal. Biosystems 
Engineering, 90(2):127–133, January 2005. 

[243] M. J. Tiusanen. Wideband antenna for underground Soil Scout transmission. 
IEEE Antennas and Wireless Propagation Letters, 5(1):517–519, December 
2006. 



44 1 Introduction to Wireless Underground Communications (WUC) 

[244] M. J. Tiusanen. Wideband antenna for underground Soil Scout transmission. 
IEEE Anten. and Wireless Prop. Ltrs, December 2006. 

[245] M. J. Tiusanen. Wireless Soil Scout prototype radio signal reception compared 
to the attenuation model. Precision Agriculture, 10(5):372–381, November 
2008. 

[246] M. J. Tiusanen. Wireless Soil Scout prototype radio signal reception compared 
to the attenuation model. Precision Agriculture, 10(5):372–381, November 
2008. 

[247] M. Johannes Tiusanen. Soil scouts: Description and performance of single 
hop wireless underground sensor nodes. Ad Hoc Networks, 11(5):1610 – 1618, 
2013. 

[248] J. Toftgard, S.N. Hornsleth, and J.B. Andersen. E˙ects on portable antennas 
of the presence of a person. IEEE Transactions on Antennas and Propagation, 
41(6):739–746, Jun. 1993. 

[249] F. Tokan and et.al. The lateral wave antenna. IEEE Transactions on Antennas 
and Propagation, 62(6):2909–2916, June 2014. 

[250] John Tooker and Mehmet C Vuran. Mobile data harvesting in wireless 
underground sensor networks. In 2012 9th Annual IEEE Communications 
Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks 
(SECON), pages 560–568. IEEE, 2012. 

[251] J. Toro-Vazquez, R. A. Rodriguez-Solis, and I. Padilla. Estimation of 
electromagnetic properties in soil testbeds using frequency and time domain 
modeling. IEEE Journal of Selected Topics in Applied Earth Observations 
and Remote Sensing, 5(3):984–989, June 2012. 

[252] Hoang Thi Huyen Trang, Seong Oun Hwang, et al. Connectivity analysis 
of underground sensors in wireless underground sensor networks. Ad Hoc 
Networks, 71:104–116, 2018. 

[253] F. T. Ulaby. Fundamentals of Applied Electromagnetics. Pearson Prentice 
Hall, 5 edition, 2007. 

[254] Fawwaz T. Ulaby and David G. Long. Microwave Radar and Radiometric 
Remote Sensing. University of Michigan Press, 2014. 

[255] R. van der Velde, M. S. Salama, O. A. Eweys, J. Wen, and Q. Wang. Soil 
moisture mapping using combined active/passive microwave observations over 
the east of the netherlands. IEEE Journal of Selected Topics in Applied Earth 
Observations and Remote Sensing, 8(9):4355–4372, Sept 2015. 

[256] Bui Van Hieu, Seunghwan Choi, Young Uk Kim, Youngsuk Park, and 
Taikyeong Jeong. Wireless transmission of acoustic emission signals for 
real-time monitoring of leakage in underground pipes. KSCE Journal of Civil 
Engineering, 15(5):805, 2011. 

[257] F. Vaziri, S. C. F. Huang, S. A. Long, and L. C. Shen. Measurement of the 
radiated felds of a buried antenna at vhf. Radio Science, 15(4):743–747, 
August 1980. 

[258] Harry Vereecken, Andrea Schnepf, Jan W Hopmans, Mathieu Javaux, Dani Or, 
Tiina Roose, Jan Vanderborght, MH Young, Wulf Amelung, Matt Aitkenhead, 



45 References 

et al. Modeling soil processes: Review, key challenges, and new perspectives. 
Vadose Zone Journal, 15(5), 2016. 

[259] Tomislav Vresk and Igor …avrak. Architecture of an interoperable iot platform 
based on microservices. In 2016 39th International Convention on Information 
and Communication Technology, Electronics and Microelectronics (MIPRO), 
pages 1196–1201. IEEE, 2016. 

[260] M. Can Vuran and Agnelo R. Silva. Communication Through Soil in Wireless 
Underground Sensor Networks – Theory and Practice, pages 309–347. Springer 
Berlin Heidelberg, Berlin, Heidelberg, 2009. 

[261] Mehmet C. Vuran and Ian F. Akyildiz. Channel model and analysis for wireless 
underground sensor networks in soil medium. Physical Communication, 
3(4):245–254, December 2010. 

[262] Mehmet C Vuran and Ian F Akyildiz. Channel model and analysis for wireless 
underground sensor networks in soil medium. Physical communication, 
3(4):245–254, 2010. 

[263] Mehmet C. Vuran, Abdul Salam, Rigoberto Wong, and Suat Irmak. Internet 
of underground things in precision agriculture: Architecture and technology 
aspects. Ad Hoc Networks, 2018. 

[264] Mehmet Can Vuran, Abdul Salam, Rigoberto Wong, and Suat Irmak. Internet 
of underground things: Sensing and communications on the feld for precision 
agriculture. In 2018 IEEE 4th World Forum on Internet of Things (WF-IoT) 
(WF-IoT 2018), , Singapore, February 2018. 

[265] J Wait and J Fuller. On radio propagation through earth. IEEE Transactions 
on Antennas and Propagation, 19(6):796–798, 1971. 

[266] J. R. Wait. The electromagnetic felds of a horizontal dipole in the presence 
of a conducting half-space. Canadian Journal of Physics, 39(7):1017–1028, 
1961. 

[267] J. R. Wang and T. J. Schmugge. An empirical model for the complex dielectric 
permittivity of soils as a function of water content. IEEE Transactions on 
Geoscience and Remote Sensing, GE-18(4):288–295, Oct 1980. 

[268] Zhang Wei, Shi Yibing, and Li Yanjun. Design of acoustic wireless remote 
transmission system for logging-while-drilling data. In 2013 IEEE 11th 
International Conference on Electronic Measurement & Instruments, volume 1, 
pages 53–57. IEEE, 2013. 

[269] W. B. Weir. Automatic measurement of complex dielectric constant and 
permeability at microwave frequencies. Proceedings of the IEEE, 62(1):33–36, 
Jan 1974. 

[270] H. A. Wheeler. Useful radiation from an underground antenna. Journal of 
Research, 65:89–91, 1961. 

[271] B. Widrow and et.al. Adaptive antenna systems. Proceedings of the IEEE, 
Dec 1967. 

[272] Rigoberto Wong. Towards cloud-based center pivot irrigation automation 
based on in-situ soil information from wireless underground sensor networks. 
Master’s thesis, University of Nebraska-Lincoln, 2017. 



46 1 Introduction to Wireless Underground Communications (WUC) 

[273] Tai Tsun Wu. Theory of the dipole antenna and the two-wire transmission line. 
Journal of Mathematical Physics, 2(4), 1961. 

[274] Li Yan, Debing Wei, Miao Pan, and Jiefu Chen. Downhole wireless 
communication using magnetic induction technique. In 2018 United States 
National Committee of URSI National Radio Science Meeting (USNC-URSI 
NRSM), pages 1–2. IEEE, 2018. 

[275] S¼ung Yang, Omar Baltaji, Youssef M Hashash, and Andrew Singer. Soilcomm: 
A miniaturized through-soil wireless data transmission system. The Journal 
of the Acoustical Society of America, 144(3):1872–1872, 2018. 

[276] Suk-Un Yoon, Liang Cheng, Ehsan Ghazanfari, Zi Wang, Xiaotong Zhang, 
Sibel Pamukcu, and Muhannad T Suleiman. Subsurface monitoring using low 
frequency wireless signal networks. In 2012 IEEE International Conference 
on Pervasive Computing and Communications Workshops, pages 443–446. 
IEEE, 2012. 

[277] X Yu, W Han, P Wu, and Z Zhang. Experiment of propagation characteristics 
based on di˙erent frequency channels of wireless underground sensor network 
in soil. Trans. Chin. Soc. Agricult. Mach., 46(4):252–260, 2015. 

[278] H. Zemmour, G. Baudoin, C. Hamouda, A. Diet, and M. Biancheri-Astier. 
Impact of soil on uwb buried antenna and communication link in ir-uwb wusn 
applications. In Radar Conference (EuRAD), 2015 European, pages 353–356, 
Sept 2015. 

[279] Hamadache Zemmour, Geneviève Baudoin, and Antoine Diet. Soil e˙ects 
on the underground-to-aboveground communication link in ultrawideband 
wireless underground sensor networks. IEEE Antennas and Wireless 
Propagation Letters, 16:218–221, 2016. 

[280] Yan Zhang, Jing Ning, Shangming Yang, and Hong-Liang Cui. Field test 
investigation of fber optic seismic geophone in oilfeld exploration. In Fiber 
Optic Sensors and Applications V, volume 6770, page 677005. International 
Society for Optics and Photonics, 2007. 

[281] Zhiping Zheng and Shengbo Hu. Research challenges involving cross-layered 
communication protocol design for underground wsns. In 2008 2nd 
International Conference on Anti-counterfeiting, Security and Identifcation, 
pages 120–123. IEEE, 2008. 

[282] Xinlei Zhou, Qingxu Yu, and Wei Peng. Simultaneous measurement 
of down-hole pressure and distributed temperature with a single fber. 
Measurement Science and Technology, 23(8):085102, 2012. 

[283] Huma Zia, Nick R Harris, Geo˙ V Merrett, Mark Rivers, and Neil Coles. 
The impact of agricultural activities on water quality: A case for collaborative 
catchment-scale management using integrated wireless sensor networks. 
Computers and electronics in agriculture, 96:126–138, 2013. 

[284] Amira Zrelli and Tahar Ezzedine. Design of optical and wireless sensors for 
underground mining monitoring system. optik, 170:376–383, 2018. 


	Signals in the Soil: An Introduction to Wireless Underground Communications
	


