127 research outputs found

    Anti-Apoptotic Machinery Protects the Necrotrophic Fungus Botrytis cinerea from Host-Induced Apoptotic-Like Cell Death during Plant Infection

    Get PDF
    Necrotrophic fungi are unable to occupy living plant cells. How such pathogens survive first contact with living host tissue and initiate infection is therefore unclear. Here, we show that the necrotrophic grey mold fungus Botrytis cinerea undergoes massive apoptotic-like programmed cell death (PCD) following germination on the host plant. Manipulation of an anti-apoptotic gene BcBIR1 modified fungal response to PCD-inducing conditions. As a consequence, strains with reduced sensitivity to PCD were hyper virulent, while strains in which PCD was over-stimulated showed reduced pathogenicity. Similarly, reduced levels of PCD in the fungus were recorded following infection of Arabidopsis mutants that show enhanced susceptibility to B. cinerea. When considered together, these results suggest that Botrytis PCD machinery is targeted by plant defense molecules, and that the fungal anti-apoptotic machinery is essential for overcoming this host-induced PCD and hence, for establishment of infection. As such, fungal PCD machinery represents a novel target for fungicides and antifungal drugs

    A review of elliptical and disc galaxy structure, and modern scaling laws

    Full text link
    A century ago, in 1911 and 1913, Plummer and then Reynolds introduced their models to describe the radial distribution of stars in `nebulae'. This article reviews the progress since then, providing both an historical perspective and a contemporary review of the stellar structure of bulges, discs and elliptical galaxies. The quantification of galaxy nuclei, such as central mass deficits and excess nuclear light, plus the structure of dark matter halos and cD galaxy envelopes, are discussed. Issues pertaining to spiral galaxies including dust, bulge-to-disc ratios, bulgeless galaxies, bars and the identification of pseudobulges are also reviewed. An array of modern scaling relations involving sizes, luminosities, surface brightnesses and stellar concentrations are presented, many of which are shown to be curved. These 'redshift zero' relations not only quantify the behavior and nature of galaxies in the Universe today, but are the modern benchmark for evolutionary studies of galaxies, whether based on observations, N-body-simulations or semi-analytical modelling. For example, it is shown that some of the recently discovered compact elliptical galaxies at 1.5 < z < 2.5 may be the bulges of modern disc galaxies.Comment: Condensed version (due to Contract) of an invited review article to appear in "Planets, Stars and Stellar Systems"(www.springer.com/astronomy/book/978-90-481-8818-5). 500+ references incl. many somewhat forgotten, pioneer papers. Original submission to Springer: 07-June-201

    Rare and Frequent Promoter Methylation, Respectively, of TSHZ2 and 3 Genes That Are Both Downregulated in Expression in Breast and Prostate Cancers

    Get PDF
    Neoplastic cells harbor both hypomethylated and hypermethylated regions of DNA. Whereas hypomethylation is found mainly in repeat sequences, regional hypermethylation has been linked to the transcriptional silencing of certain tumor suppressor genes. We attempted to search for candidate genes involved in breast/prostate carcinogenesis, using the criteria that they should be expressed in primary cultures of normal breast/prostate epithelial cells but are frequently downregulated in breast/prostate cancer cell lines and that their promoters are hypermethylated.We identified several dozens of candidates among 194 homeobox and related genes using Systematic Multiplex RT-PCR and among 23,000 known genes and 23,000 other expressed sequences in the human genome by DNA microarray hybridization. An additional examination, by real-time qRT-PCR of clinical specimens of breast cancer, further narrowed the list of the candidates. Among them, the most frequently downregulated genes in tumors were NP_775756 and ZNF537, from the homeobox gene search and the genome-wide search, respectively. To our surprise, we later discovered that these genes belong to the same gene family, the 3-member Teashirt family, bearing the new names of TSHZ2 and TSHZ3. We subsequently determined the methylation status of their gene promoters. The TSHZ3 gene promoter was found to be methylated in all the breast/prostate cancer cell lines and some of the breast cancer clinical specimens analyzed. The TSHZ2 gene promoter, on the other hand, was unmethylated except for the MDA-MB-231 breast cancer cell line. The TSHZ1 gene was always expressed, and its promoter was unmethylated in all cases.TSHZ2 and TSHZ3 genes turned out to be the most interesting candidates for novel tumor suppressor genes. Expression of both genes is downregulated. However, differential promoter methylation suggests the existence of distinctive mechanisms of transcriptional inactivation for these genes

    The Herbicide Atrazine Activates Endocrine Gene Networks via Non-Steroidal NR5A Nuclear Receptors in Fish and Mammalian Cells

    Get PDF
    Atrazine (ATR) remains a widely used broadleaf herbicide in the United States despite the fact that this s-chlorotriazine has been linked to reproductive abnormalities in fish and amphibians. Here, using zebrafish we report that environmentally relevant ATR concentrations elevated zcyp19a1 expression encoding aromatase (2.2 ”g/L), and increased the ratio of female to male fish (22 ”g/L). ATR selectively increased zcyp19a1, a known gene target of the nuclear receptor SF-1 (NR5A1), whereas zcyp19a2, which is estrogen responsive, remained unchanged. Remarkably, in mammalian cells ATR functions in a cell-specific manner to upregulate SF-1 targets and other genes critical for steroid synthesis and reproduction, including Cyp19A1, StAR, Cyp11A1, hCG, FSTL3, LHß, INHα, αGSU, and 11ß-HSD2. Our data appear to eliminate the possibility that ATR directly affects SF-1 DNA- or ligand-binding. Instead, we suggest that the stimulatory effects of ATR on the NR5A receptor subfamily (SF-1, LRH-1, and zff1d) are likely mediated by receptor phosphorylation, amplification of cAMP and PI3K signaling, and possibly an increase in the cAMP-responsive cellular kinase SGK-1, which is known to be upregulated in infertile women. Taken together, we propose that this pervasive and persistent environmental chemical alters hormone networks via convergence of NR5A activity and cAMP signaling, to potentially disrupt normal endocrine development and function in lower and higher vertebrates

    Does the routine use of global coronary heart disease risk scores translate into clinical benefits or harms? A systematic review of the literature

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Guidelines now recommend routine assessment of global coronary heart disease (CHD) risk scores. We performed a systematic review to assess whether global CHD risk scores result in clinical benefits or harms.</p> <p>Methods</p> <p>We searched MEDLINE (1966 through June 13, 2007) for articles relevant to our review. Using predefined inclusion and exclusion criteria, we included studies of any design that provided physicians with global risk scores or allowed them to calculate scores themselves, and then measured clinical benefits and/or harms. Two reviewers reviewed potentially relevant studies for inclusion and resolved disagreement by consensus. Data from each article was then abstracted into an evidence table by one reviewer and the quality of evidence was assessed independently by two reviewers.</p> <p>Results</p> <p>11 studies met criteria for inclusion in our review. Six studies addressed clinical benefits and 5 addressed clinical harms. Six studies were rated as "fair" quality and the others were deemed "methodologically limited". Two fair quality studies showed that physician knowledge of global CHD risk is associated with increased prescription of cardiovascular drugs in high risk (but not all) patients. Two additional fair quality studies showed no effect on their primary outcomes, but one was underpowered and the other focused on prescribing of lifestyle changes, rather than drugs whose prescribing might be expected to be targeted by risk level. One of these aforementioned studies showed improved blood pressure in high-risk patients, but no improvement in the proportion of patients at high risk, perhaps due to the high proportion of participants with baseline risks significantly exceeding the risk threshold. Two fair quality studies found no evidence of harm from patient knowledge of global risk scores when they were accompanied by counseling, and optional or scheduled follow-up. Other studies were too methodologically limited to draw conclusions.</p> <p>Conclusion</p> <p>Our review provides preliminary evidence that physicians' knowledge of global CHD risk scores may translate into modestly increased prescribing of cardiovascular drugs and modest short-term reductions in CHD risk factors without clinical harm. Whether these results are replicable, and translate across other practice settings or into improved long-term CHD outcomes remains to be seen.</p

    New Insights into the Phylogeny and Molecular Classification of Nicotinamide Mononucleotide Deamidases

    Get PDF
    Nicotinamide mononucleotide (NMN) deamidase is one of the key enzymes of the bacterial pyridine nucleotide cycle (PNC). It catalyzes the conversion of NMN to nicotinic acid mononucleotide, which is later converted to NAD+ by entering the Preiss-Handler pathway. However, very few biochemical data are available regarding this enzyme. This paper represents the first complete molecular characterization of a novel NMN deamidase from the halotolerant and alkaliphilic bacterium Oceanobacillus iheyensis (OiPncC). The enzyme was active over a broad pH range, with an optimum at pH 7.4, whilst maintaining 90 % activity at pH 10.0. Surprisingly, the enzyme was quite stable at such basic pH, maintaining 61 % activity after 21 days. As regard temperature, it had an optimum at 65 °C but its stability was better below 50 °C. OiPncC was a Michaelian enzyme towards its only substrate NMN, with a Km value of 0.18 mM and a kcat/Km of 2.1 mM-1 s-1. To further our understanding of these enzymes, a complete phylogenetic and structural analysis was carried out taking into account the two Pfam domains usually associated with them (MocF and CinA). This analysis sheds light on the evolution of NMN deamidases, and enables the classification of NMN deamidases into 12 different subgroups, pointing to a novel domain architecture never before described. Using a Logo representation, conserved blocks were determined, providing new insights on the crucial residues involved in the binding and catalysis of both CinA and MocF domains. The analysis of these conserved blocks within new protein sequences could permit the more efficient data curation of incoming NMN deamidases

    Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018.

    Get PDF
    Over the past decade, the Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives. Since the field continues to expand and novel mechanisms that orchestrate multiple cell death pathways are unveiled, we propose an updated classification of cell death subroutines focusing on mechanistic and essential (as opposed to correlative and dispensable) aspects of the process. As we provide molecularly oriented definitions of terms including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence, and mitotic catastrophe, we discuss the utility of neologisms that refer to highly specialized instances of these processes. The mission of the NCCD is to provide a widely accepted nomenclature on cell death in support of the continued development of the field

    Cross Adaptation - Heat and Cold Adaptation to Improve Physiological and Cellular Responses to Hypoxia

    Get PDF
    To prepare for extremes of heat, cold or low partial pressures of O2, humans can undertake a period of acclimation or acclimatization to induce environment specific adaptations e.g. heat acclimation (HA), cold acclimation (CA), or altitude training. Whilst these strategies are effective, they are not always feasible, due to logistical impracticalities. Cross adaptation is a term used to describe the phenomenon whereby alternative environmental interventions e.g. HA, or CA, may be a beneficial alternative to altitude interventions, providing physiological stress and inducing adaptations observable at altitude. HA can attenuate physiological strain at rest and during moderate intensity exercise at altitude via adaptations allied to improved oxygen delivery to metabolically active tissue, likely following increases in plasma volume and reductions in body temperature. CA appears to improve physiological responses to altitude by attenuating the autonomic response to altitude. While no cross acclimation-derived exercise performance/capacity data have been measured following CA, post-HA improvements in performance underpinned by aerobic metabolism, and therefore dependent on oxygen delivery at altitude, are likely. At a cellular level, heat shock protein responses to altitude are attenuated by prior HA suggesting that an attenuation of the cellular stress response and therefore a reduced disruption to homeostasis at altitude has occurred. This process is known as cross tolerance. The effects of CA on markers of cross tolerance is an area requiring further investigation. Because much of the evidence relating to cross adaptation to altitude has examined the benefits at moderate to high altitudes, future research examining responses at lower altitudes should be conducted given that these environments are more frequently visited by athletes and workers. Mechanistic work to identify the specific physiological and cellular pathways responsible for cross adaptation between heat and altitude, and between cold and altitude, is warranted, as is exploration of benefits across different populations and physical activity profiles
    • 

    corecore