97 research outputs found
Radiographic evaluation of calcaneal fractures: To measure or not to measure
Objective: The aim of this study was to correlate the functional outcome after treatment for displaced intra-articular calcaneal fracture with plain radiography. Design: The design was a prognostic study of a retrospective cohort with concurrent follow-up. Patients: A total of 33 patients with a unilateral calcaneal fracture and a minimum follow-up of 13 months participated. Patients filled in three disease-specific questionnaires, graded their satisfaction and the indication for an arthrodesis was noted. Standardised radiographs were made of the previously injured side and the normal (control) side. Different angles and distances were measured on these radiographs and compared with values described in the literature. The differences in values in angles and distances between the injured and uninjured (control) foot were correlated with the outcome of the questionnaires, and the indication for an arthrodesis. Results: None of the angles correlated with the disease-specific outcome scores. Of the angles only the tibiotalar angle correlated with the VAS (r=0.35, p=0.045) and only the absolute foot height correlated with the indication for an arthrodesis (odds=0.70, CI=0.50-0.99). Conclusion: In this study the radiographic evaluation correlated poorly with the final outcome. Measurements on plain radiographs seem not to be useful in determining outcome after intra-articular calcaneal fractures
Adventures in the Enormous: A 1.8 Million Clone BAC Library for the 21.7 Gb Genome of Loblolly Pine
Loblolly pine (LP; Pinus taeda L.) is the most economically important tree in the U.S. and a cornerstone species in southeastern forests. However, genomics research on LP and other conifers has lagged behind studies on flowering plants due, in part, to the large size of conifer genomes. As a means to accelerate conifer genome research, we constructed a BAC library for the LP genotype 7-56. The LP BAC library consists of 1,824,768 individually-archived clones making it the largest single BAC library constructed to date, has a mean insert size of 96 kb, and affords 7.6X coverage of the 21.7 Gb LP genome. To demonstrate the efficacy of the library in gene isolation, we screened macroarrays with overgos designed from a pine EST anchored on LP chromosome 10. A positive BAC was sequenced and found to contain the expected full-length target gene, several gene-like regions, and both known and novel repeats. Macroarray analysis using the retrotransposon IFG-7 (the most abundant repeat in the sequenced BAC) as a probe indicates that IFG-7 is found in roughly 210,557 copies and constitutes about 5.8% or 1.26 Gb of LP nuclear DNA; this DNA quantity is eight times the Arabidopsis genome. In addition to its use in genome characterization and gene isolation as demonstrated herein, the BAC library should hasten whole genome sequencing of LP via next-generation sequencing strategies/technologies and facilitate improvement of trees through molecular breeding and genetic engineering. The library and associated products are distributed by the Clemson University Genomics Institute (www.genome.clemson.edu)
Pulsed electromagnetic fields after arthroscopic treatment for osteochondral defects of the talus: double-blind randomized controlled multicenter trial
Background. Osteochondral talar defects usually affect athletic patients. The primary surgical treatment consists of arthroscopic debridement and microfracturing. Although this is mostly successful, early sport resumption is difficult to achieve, and it can take up to one year to obtain clinical improvement. Pulsed electromagnetic fields (PEMFs) may be effective for talar defects after arthroscopic treatment by promoting tissue healing, suppressing inflammation, and relieving pain. We hypothesize that PEMF-treatment compared to sham-treatment after arthroscopy will lead to earlier resumption of sports, and aim at 25% increase in patients that resume sports. Methods/Design. A prospective, double-blind, randomized, placebo-controlled trial (RCT) will be conducted in five centers throughout the Netherlands and Belgium. 68 patients will be randomized to either active PEMF-treatment or sham-treatment for 60 days, four hours daily. They will be followed-up for one year. The combined primary outcome measures are (a) the percentage of patients that resume and maintain sports, and (b) the time to resumption of sports, defined by the Ankle Activity Score. Secondary outcome measures include resumption of work, subjective and objective scoring systems (American Orthopaedic Foot and Ankle Society Ankle-Hindfoot Scale, Foot Ankle Outcome Score, Numeric Rating Scales of pain and satisfaction, EuroQol-5D), and computed tomography. Time to resumption of sports will be analyzed using Kaplan-Meier curves and log-rank tests. Discussion. This trial will provide level-1 evidence on the effectiveness of PEMFs in the management of osteochondral ankle lesions after arthroscopy. Trial registration. Netherlands Trial Register (NTR1636)
An Antimicrobial Peptide Regulates Tumor-Associated Macrophage Trafficking via the Chemokine Receptor CCR2, a Model for Tumorigenesis
Tumor-associated macrophages (TAMs) constitute a significant part of infiltrating inflammatory cells that are frequently correlated with progression and poor prognosis of a variety of cancers. Tumor cell-produced human β-defensin-3 (hBD-3) has been associated with TAM trafficking in oral cancer; however, its involvement in tumor-related inflammatory processes remains largely unknown., applying a cross-desensitization strategy of CCR2 and its pharmacological inhibitor (RS102895), respectively, was also carried out. outcome and demonstrates the importance of the innate immune system in the development of tumors
The spotted gar genome illuminates vertebrate evolution and facilitates human-teleost comparisons
To connect human biology to fish biomedical models, we sequenced the genome of spotted gar (Lepisosteus oculatus), whose lineage diverged from teleosts before teleost genome duplication (TGD). The slowly evolving gar genome has conserved in content and size many entire chromosomes from bony vertebrate ancestors. Gar bridges teleosts to tetrapods by illuminating the evolution of immunity, mineralization and development (mediated, for example, by Hox, ParaHox and microRNA genes). Numerous conserved noncoding elements (CNEs; often cis regulatory) undetectable in direct human-teleost comparisons become apparent using gar: functional studies uncovered conserved roles for such cryptic CNEs, facilitating annotation of sequences identified in human genome-wide association studies. Transcriptomic analyses showed that the sums of expression domains and expression levels for duplicated teleost genes often approximate the patterns and levels of expression for gar genes, consistent with subfunctionalization. The gar genome provides a resource for understanding evolution after genome duplication, the origin of vertebrate genomes and the function of human regulatory sequences
Improving our understanding of the in vivo modelling of psychotic disorders: a systematic review and meta-analysis
Psychotic disorders represent a severe category of mental disorders affecting about one
percent of the population. Individuals experience a loss or distortion of contact with reality
alongside other symptoms, many of which are still not adequately managed using existing
treatments. While animal models of these disorders could offer insights into these disorders
and potential new treatments, translation of this knowledge has so far been poor in terms of
informing clinical trials and practice. The aim of this project was to improve our
understanding of these pre-clinical studies and identify potential weaknesses underlying
translational failure.
I carried out a systematic search of the literature to provide an unbiased summary of
publications reporting animal models of schizophrenia and other psychotic disorders. From
these publications, data were extracted to quantify aspects of the field including reported
quality of studies, study characteristics and behavioural outcome data. The latter of these
data were then used to calculate estimates of efficacy using random-effects meta-analysis.
Having identified 3847 publications of relevance, including 852 different methods used to
induce the model, over 359 different outcomes tested in them and almost 946 different
treatments reported to be administered. I show that a large proportion of studies use simple
pharmacological interventions to induce their models of these disorders, despite the
availability of models using other interventions that are arguably of higher translational
relevance. I also show that the reported quality of these studies is low, and only 22% of
studies report taking measures to reduce the risk of biases such as randomisation and
blinding, which has been shown to affect the reliability of results drawn.
Through this work it becomes apparent that the literature is incredibly vast for studies looking
at animal models of psychotic disorders and that some of the relevant work potentially
overlaps with studies describing other conditions. This means that drawing reliable
conclusions from these data is affected by what is made available in the literature, how it is
reported and identified in a search and the time that it takes to reach these conclusions. I
introduce the idea of using computer-assisted tools to overcome one of these problems in
the long term.
Translation of results from studies looking at animals modelling uniquely-human psychotic
disorders to clinical successes might be improved by better reporting of studies including
publishing of all work carried out, labelling of studies more uniformly so that it is identifiable,
better reporting of study design including improving on reporting of measures taken to
reduce the risk of bias and focusing on models with greater validity to the human condition
- …