20 research outputs found

    Single-molecule experiments in biological physics: methods and applications

    Full text link
    I review single-molecule experiments (SME) in biological physics. Recent technological developments have provided the tools to design and build scientific instruments of high enough sensitivity and precision to manipulate and visualize individual molecules and measure microscopic forces. Using SME it is possible to: manipulate molecules one at a time and measure distributions describing molecular properties; characterize the kinetics of biomolecular reactions and; detect molecular intermediates. SME provide the additional information about thermodynamics and kinetics of biomolecular processes. This complements information obtained in traditional bulk assays. In SME it is also possible to measure small energies and detect large Brownian deviations in biomolecular reactions, thereby offering new methods and systems to scrutinize the basic foundations of statistical mechanics. This review is written at a very introductory level emphasizing the importance of SME to scientists interested in knowing the common playground of ideas and the interdisciplinary topics accessible by these techniques. The review discusses SME from an experimental perspective, first exposing the most common experimental methodologies and later presenting various molecular systems where such techniques have been applied. I briefly discuss experimental techniques such as atomic-force microscopy (AFM), laser optical tweezers (LOT), magnetic tweezers (MT), biomembrane force probe (BFP) and single-molecule fluorescence (SMF). I then present several applications of SME to the study of nucleic acids (DNA, RNA and DNA condensation), proteins (protein-protein interactions, protein folding and molecular motors). Finally, I discuss applications of SME to the study of the nonequilibrium thermodynamics of small systems and the experimental verification of fluctuation theorems. I conclude with a discussion of open questions and future perspectives.Comment: Latex, 60 pages, 12 figures, Topical Review for J. Phys. C (Cond. Matt

    New strategies for integrative dynamic modeling of macromolecular assembly

    No full text
    Data reporting on structure and dynamics of cellular constituents are growing with increasing pace enabling, as never before, the understanding of fine mechanistic aspects of biological systems and providing the possibility to affect them in controlled ways. Nonetheless, experimental techniques do not yet allow for an arbitrary level of resolution on cellular processes in situ. By consistently integrating a variety of diverse experimental data, molecular modeling is optimally poised to enhance to near-atomistic resolution our understanding of molecular recognition in large assemblies. Within this integrative modeling context, we briefly review in this chapter the recent progresses of molecular simulations at the atomistic and coarse-grained level of resolution to explore protein–protein interactions. In particular, we discuss our recent contributions in this field, which aim at providing a robust bridge between novel optimization algorithms and multiscale molecular simulations for a consistent integration of experimental inputs. We expect that, with the ever-growing sampling ability of molecular simulations and the tireless progress of experimental methods, the impact of such dynamic-based approach could only be more effective with time, contributing to provide detailed description of cellular organization

    Elucidation of the biosynthesis of the methane catalyst coenzyme F430

    Get PDF
    Methane biogenesis in methanogens is mediated by methyl-coenzyme M reductase, an enzyme that is also responsible for the utilization of methane through anaerobic methane oxidation. The enzyme uses an ancillary factor called coenzyme F430, a nickel-containing modified tetrapyrrole that promotes catalysis through a methyl radical/Ni(II)-thiolate intermediate. However, it is unclear how coenzyme F430 is synthesized from the common primogenitor uroporphyrinogen III, incorporating 11 steric centres into the macrocycle, although the pathway must involve chelation, amidation, macrocyclic ring reduction, lactamization and carbocyclic ring formation. Here we identify the proteins that catalyse the biosynthesis of coenzyme F430 from sirohydrochlorin, termed CfbA–CfbE, and demonstrate their activity. The research completes our understanding of how the repertoire of tetrapyrrole-based pigments are constructed, permitting the development of recombinant systems to use these metalloprosthetic groups more widely
    corecore