75 research outputs found

    Ridge Formation and De-Spinning of Iapetus via an Impact-Generated Satellite

    Full text link
    We present a scenario for building the equatorial ridge and de-spinning Iapetus through an impact-generated disk and satellite. This impact puts debris into orbit, forming a ring inside the Roche limit and a satellite outside. This satellite rapidly pushes the ring material down to the surface of Iapetus, and then itself tidally evolves outward, thereby helping to de-spin Iapetus. This scenario can de-spin Iapetus an order of magnitude faster than when tides due to Saturn act alone, almost independently of its interior geophysical evolution. Eventually, the satellite is stripped from its orbit by Saturn. The range of satellite and impactor masses required is compatible with the estimated impact history of Iapetus.Comment: 19 pages, 3 figures; Icarus, in pres

    (47171) 1999 TC36, A Transneptunian Triple

    Full text link
    We present new analysis of HST images of (47171) 1999 TC36 that confirm it as a triple system. Fits to the point-spread function consistently show that the apparent primary is itself composed of two similar-sized components. The two central components, A1 and A2, can be consistently identified in each of nine epochs spread over seven years of time. In each instance the component separation, ranging from 0.023+/-0.002 to 0.031+/-0.003 arcsec, is roughly one half of the Hubble Space Telescope's diffraction limit at 606 nm. The orbit of the central pair has a semi-major axis of a~867 km with a period of P~1.9 days. These orbital parameters yield a system mass that is consistent with Msys = 12.75+/-0.06 10^18 kg derived from the orbit of the more distant secondary, component B. The diameters of the three components are dA1= 286(+45,-38) km, dA2= 265(+41,-35 km and dB= 139(+22,-18) km. The relative sizes of these components are more similar than in any other known multiple in the solar system. Taken together, the diameters and system mass yield a bulk density of p=542(+317,-211) kg m^-3. HST Photometry shows that component B is variable with an amplitude of >=0.17+/-0.05 magnitudes. Components A1 and A2 do not show variability larger than 0.08+/-0.03 magnitudes approximately consistent with the orientation of the mutual orbit plane and tidally-distorted equilibrium shapes. The system has high specific angular momentum of J/J'=0.93, comparable to most of the known Transneptunian binaries.Comment: 16 pages, 8 figures, 6 tables. Accepted to Icaru

    Mutual Events in the Cold Classical Transneptunian Binary System Sila and Nunam

    Full text link
    Hubble Space Telescope observations between 2001 and 2010 resolved the binary components of the Cold Classical transneptunian object (79360) Sila-Nunam (provisionally designated 1997 CS29). From these observations we have determined the circular, retrograde mutual orbit of Nunam relative to Sila with a period of 12.50995 \pm 0.00036 days and a semimajor axis of 2777 \pm 19 km. A multi-year season of mutual events, in which the two near-equal brightness bodies alternate in passing in front of one another as seen from Earth, is in progress right now, and on 2011 Feb. 1 UT, one such event was observed from two different telescopes. The mutual event season offers a rich opportunity to learn much more about this barely-resolvable binary system, potentially including component sizes, colors, shapes, and albedo patterns. The low eccentricity of the orbit and a photometric lightcurve that appears to coincide with the orbital period are consistent with a system that is tidally locked and synchronized, like the Pluto-Charon system. The orbital period and semimajor axis imply a system mass of (10.84 \pm 0.22) \times 10^18 kg, which can be combined with a size estimate based on Spitzer and Herschel thermal infrared observations to infer an average bulk density of 0.72 +0.37 -0.23 g cm^-3, comparable to the very low bulk densities estimated for small transneptunian binaries of other dynamical classes.Comment: In press in Icaru

    The Correlated Colors of Transneptunian Binaries

    Full text link
    We report resolved photometry of the primary and secondary components of 23 transneptunian binaries obtained with the Hubble Space Telescope. V-I colors of the components range from 0.7 to 1.5 with a median uncertainty of 0.06 magnitudes. The colors of the primaries and secondaries are correlated with a Spearman rank correlation probability of 99.99991%, 5 sigma for a normal distribution. Fits to the primary vs. secondary colors are identical to within measurement uncertainties. The color range of binaries as a group is indistinguishable from that of the larger population of apparently single transneptunian objects. Whatever mechanism produced the colors of apparently single TNOs acted equally on binary systems. The most likely explanation is that the colors of transneptunian objects and binaries alike are primordial and indicative of their origin in a locally homogeneous, globally heterogeneous protoplanetary disk.Comment: 28 pages, 4 figure, 4 tables. accepted to Icaru

    The Kuiper Belt and Other Debris Disks

    Full text link
    We discuss the current knowledge of the Solar system, focusing on bodies in the outer regions, on the information they provide concerning Solar system formation, and on the possible relationships that may exist between our system and the debris disks of other stars. Beyond the domains of the Terrestrial and giant planets, the comets in the Kuiper belt and the Oort cloud preserve some of our most pristine materials. The Kuiper belt, in particular, is a collisional dust source and a scientific bridge to the dusty "debris disks" observed around many nearby main-sequence stars. Study of the Solar system provides a level of detail that we cannot discern in the distant disks while observations of the disks may help to set the Solar system in proper context.Comment: 50 pages, 25 Figures. To appear in conference proceedings book "Astrophysics in the Next Decade

    Interpretation of the Disk-Integrated Lightcurve of the Dinkinesh System as Observed by Lucy

    Get PDF
    The Lucy mission, launched in October 2021, will encounter the first of its primary targets, the Trojan asteroids, in August 2027. A flyby of main-belt asteroid (MBA) Donaldjohanson in April 2025 had always been planned as a rehearsal and system test for the Trojan encounters [1]. However in early 2023 the project decided to spend a small amount of fuel to enable an additional close (430 km) flyby of MBA (152830) Dinkinesh on November 1st 2023, providing a valuable opportunity for an earlier rehearsal. Ground-based data showed Dinkinesh to be a typical small (~1 km diameter) S-type inner main-belt asteroid [2,3], and it was chosen only for its accessibility to the spacecraft. However, Lucy data has revealed it to be an exceptionally interesting science target, in particular due to the discovery of its satellite, now named Selam

    The Science of Sungrazers, Sunskirters, and Other Near-Sun Comets

    Get PDF
    This review addresses our current understanding of comets that venture close to the Sun, and are hence exposed to much more extreme conditions than comets that are typically studied from Earth. The extreme solar heating and plasma environments that these objects encounter change many aspects of their behaviour, thus yielding valuable information on both the comets themselves that complements other data we have on primitive solar system bodies, as well as on the near-solar environment which they traverse. We propose clear definitions for these comets: We use the term near-Sun comets to encompass all objects that pass sunward of the perihelion distance of planet Mercury (0.307 AU). Sunskirters are defined as objects that pass within 33 solar radii of the Sun’s centre, equal to half of Mercury’s perihelion distance, and the commonly-used phrase sungrazers to be objects that reach perihelion within 3.45 solar radii, i.e. the fluid Roche limit. Finally, comets with orbits that intersect the solar photosphere are termed sundivers. We summarize past studies of these objects, as well as the instruments and facilities used to study them, including space-based platforms that have led to a recent revolution in the quantity and quality of relevant observations. Relevant comet populations are described, including the Kreutz, Marsden, Kracht, and Meyer groups, near-Sun asteroids, and a brief discussion of their origins. The importance of light curves and the clues they provide on cometary composition are emphasized, together with what information has been gleaned about nucleus parameters, including the sizes and masses of objects and their families, and their tensile strengths. The physical processes occurring at these objects are considered in some detail, including the disruption of nuclei, sublimation, and ionisation, and we consider the mass, momentum, and energy loss of comets in the corona and those that venture to lower altitudes. The different components of comae and tails are described, including dust, neutral and ionised gases, their chemical reactions, and their contributions to the near-Sun environment. Comet-solar wind interactions are discussed, including the use of comets as probes of solar wind and coronal conditions in their vicinities. We address the relevance of work on comets near the Sun to similar objects orbiting other stars, and conclude with a discussion of future directions for the field and the planned ground- and space-based facilities that will allow us to address those science topics

    Dynamical Properties of the Dinkinesh-Selam Binary

    Get PDF
    The Lucy spacecraft encountered the Main Belt asteroid (152830) Dinkinesh on 01 November 2023 revealing it to be a binary system with a first-of-its-kind contact binary secondary, now named Selam. However, despite the novelty of Selam’s structure, most aspects of the Dinkinesh system can be considered in the broader context of similar Main Belt (MB) and Near-Earth Asteroid (NEA) binary systems

    Origin and Evolution of Saturn's Ring System

    Full text link
    The origin and long-term evolution of Saturn's rings is still an unsolved problem in modern planetary science. In this chapter we review the current state of our knowledge on this long-standing question for the main rings (A, Cassini Division, B, C), the F Ring, and the diffuse rings (E and G). During the Voyager era, models of evolutionary processes affecting the rings on long time scales (erosion, viscous spreading, accretion, ballistic transport, etc.) had suggested that Saturn's rings are not older than 100 My. In addition, Saturn's large system of diffuse rings has been thought to be the result of material loss from one or more of Saturn's satellites. In the Cassini era, high spatial and spectral resolution data have allowed progress to be made on some of these questions. Discoveries such as the ''propellers'' in the A ring, the shape of ring-embedded moonlets, the clumps in the F Ring, and Enceladus' plume provide new constraints on evolutionary processes in Saturn's rings. At the same time, advances in numerical simulations over the last 20 years have opened the way to realistic models of the rings's fine scale structure, and progress in our understanding of the formation of the Solar System provides a better-defined historical context in which to understand ring formation. All these elements have important implications for the origin and long-term evolution of Saturn's rings. They strengthen the idea that Saturn's rings are very dynamical and rapidly evolving, while new arguments suggest that the rings could be older than previously believed, provided that they are regularly renewed. Key evolutionary processes, timescales and possible scenarios for the rings's origin are reviewed in the light of tComment: Chapter 17 of the book ''Saturn After Cassini-Huygens'' Saturn from Cassini-Huygens, Dougherty, M.K.; Esposito, L.W.; Krimigis, S.M. (Ed.) (2009) 537-57

    Oligarchic growth of giant planets

    Full text link
    Runaway growth ends when the largest protoplanets dominate the dynamics of the planetesimal disk; the subsequent self-limiting accretion mode is referred to as ``oligarchic growth.'' Here, we begin by expanding on the existing analytic model of the oligarchic growth regime. From this, we derive global estimates of the planet formation rate throughout a protoplanetary disk. We find that a relatively high-mass protoplanetary disk (\sim 10×\times minimum-mass) is required to produce giant planet core-sized bodies (\sim 10 M_{\oplus}) within the lifetime of the nebular gas (\la 10 million years). However, an implausibly massive disk is needed to produce even an Earth mass at the orbit of Uranus by 10 Myrs. Subsequent accretion without the dissipational effect of gas is even slower and less efficient. In the limit of non-interacting planetesimals, a reasonable-mass disk is unable to produce bodies the size of the Solar System's two outer giant planets at their current locations on {\it any} timescale; if collisional damping of planetesimal random velocities is sufficiently effective, though, it may be possible for a Uranus/Neptune to form in situ in less than the age of the Solar System. We perform numerical simulations of oligarchic growth with gas, and find that protoplanet growth rates agree reasonably well with the analytic model as long as protoplanet masses are well below their estimated final masses. However, accretion stalls earlier than predicted, so that the largest final protoplanet masses are smaller than those given by the model. Thus the oligarchic growth model, in the form developed here, appears to provide an upper limit for the efficiency of giant planet formation.Comment: ScienceDirect already has the final published version here: dx.doi.org/10.1016/S0019-1035(02)00043-
    corecore