45 research outputs found

    Inversion of the Diffraction Pattern from an Inhomogeneously Strained Crystal using an Iterative Algorithm

    Full text link
    The displacement field in highly non uniformly strained crystals is obtained by addition of constraints to an iterative phase retrieval algorithm. These constraints include direct space density uniformity and also constraints to the sign and derivatives of the different components of the displacement field. This algorithm is applied to an experimental reciprocal space map measured using high resolution X-ray diffraction from an array of silicon lines and the obtained component of the displacement field is in very good agreement with the one calculated using a finite element model.Comment: 5 pages, 4 figure

    Linear and nonlinear optical properties of realistic quantum-wire structures: The dominant role of Coulomb correlation

    Get PDF
    A systematic analysis of the linear and nonlinear optical properties of realistic quantum wires is presented. The proposed theoretical approach, based on a set of generalized semiconductor Bloch equations, provides a full three-dimensional multisubband description of carrier-carrier correlation for any profile of the confinement potential, thus allowing a direct comparison with experiments on available structures. In agreement with previous investigations based on simplified one-dimensional models, our analysis shows that, also for realistic quantum-wire structures, electron-hole Coulomb correlation completely removes the one-dimensional band-edge singularities from the linear-absorption spectra. Moreover, we find that this effect is present also at high densities (corresponding to gain regimes) and contributes significantly in suppressing the ideal sharp features of the free-carrier density of states. The multisubband nature of available state-of-the-art structures is found to play a dominant role in determining the overall spectral shape in the whole density range

    Band structure and optical anisotropy in V-shaped and T-shaped semiconductor quantum wires

    Get PDF
    We present a theoretical investigation of the electronic and optical properties of V- and T-shaped quantum wires. Valence-band mixing as well as realistic sample geometries are fully included through an accurate and efficient approach that is described here in detail. We investigate the resulting valence-band structure, which shows some significant peculiarities, such as an anomalously large spin splitting in the lowest heavy-hole subband of T-shaped wires. For both classes of wires we obtain good agreement between calculated optical absorption and recent experimental spectra, and we demonstrate that the analysis of optical anisotropy can be used as an effective tool to extract information on valence states, which is usually very difficult to obtain otherwise

    The Petrochemistry of Jake_M: A Martian Mugearite

    Get PDF
    “Jake_M,” the first rock analyzed by the Alpha Particle X-ray Spectrometer instrument on the Curiosity rover, differs substantially in chemical composition from other known martian igneous rocks: It is alkaline (>15% normative nepheline) and relatively fractionated. Jake_M is compositionally similar to terrestrial mugearites, a rock type typically found at ocean islands and continental rifts. By analogy with these comparable terrestrial rocks, Jake_M could have been produced by extensive fractional crystallization of a primary alkaline or transitional magma at elevated pressure, with or without elevated water contents. The discovery of Jake_M suggests that alkaline magmas may be more abundant on Mars than on Earth and that Curiosity could encounter even more fractionated alkaline rocks (for example, phonolites and trachytes)

    Elemental Geochemistry of Sedimentary Rocks at Yellowknife Bay, Gale Crater, Mars

    Get PDF
    Sedimentary rocks examined by the Curiosity rover at Yellowknife Bay, Mars, were derived from sources that evolved from approximately average Martian crustal composition to one influenced by alkaline basalts. No evidence of chemical weathering is preserved indicating arid, possibly cold, paleoclimates and rapid erosion/deposition. Absence of predicted geochemical variations indicates that magnetite and phyllosilicates formed by diagenesis under low temperature, circum-neutral pH, rock-dominated aqueous conditions. High spatial resolution analyses of diagenetic features, including concretions, raised ridges and fractures, indicate they are composed of iron- and halogen-rich components, magnesium-iron-chlorine-rich components and hydrated calcium-sulfates, respectively. Composition of a cross-cutting dike-like feature is consistent with sedimentary intrusion. Geochemistry of these sedimentary rocks provides further evidence for diverse depositional and diagenetic sedimentary environments during the early history of Mars

    Volatile and Organic Compositions of Sedimentary Rocks in Yellowknife Bay, Gale crater, Mars

    Get PDF
    H₂O, CO₂, SO₂, O₂, H₂, H₂S, HCl, chlorinated hydrocarbons, NO and other trace gases were evolved during pyrolysis of two mudstone samples acquired by the Curiosity rover at Yellowknife Bay within Gale crater, Mars. H₂O/OH-bearing phases included 2:1 phyllosilicate(s), bassanite, akaganeite, and amorphous materials. Thermal decomposition of carbonates and combustion of organic materials are candidate sources for the CO₂. Concurrent evolution of O₂ and chlorinated hydrocarbons suggest the presence of oxychlorine phase(s). Sulfides are likely sources for S-bearing species. Higher abundances of chlorinated hydrocarbons in the mudstone compared with Rocknest windblown materials previously analyzed by Curiosity suggest that indigenous martian or meteoritic organic C sources may be preserved in the mudstone; however, the C source for the chlorinated hydrocarbons is not definitively of martian origin

    Mineralogy of a Mudstone at Yellowknife Bay, Gale Crater, Mars

    Get PDF
    Sedimentary rocks at Yellowknife Bay (Gale Crater) on Mars include mudstone sampled by the Curiosity rover. The samples, John Klein and Cumberland, contain detrital basaltic minerals, Ca-sulfates, Fe oxide/hydroxides, Fe-sulfides, amorphous material, and trioctahedral smectites. The John Klein smectite has basal spacing of ~10 Å indicating little interlayer hydration. The Cumberland smectite has basal spacing at ~13.2 Å as well as ~10 Å. The ~13.2 Å spacing suggests a partially chloritized interlayer or interlayer Mg or Ca facilitating H_2O retention. Basaltic minerals in the mudstone are similar to those in nearby eolian deposits. However, the mudstone has far less Fe-forsterite, possibly lost with formation of smectite plus magnetite. Late Noachian/Early Hesperian or younger age indicates that clay mineral formation on Mars extended beyond Noachian time

    A Habitable Fluvio-Lacustrine Environment at Yellowknife Bay, Gale Crater, Mars

    Get PDF
    The Curiosity rover discovered fine-grained sedimentary rocks, inferred to represent an ancient lake, preserve evidence of an environment that would have been suited to support a Martian biosphere founded on chemolithoautotrophy. This aqueous environment was characterized by neutral pH, low salinity, and variable redox states of both iron and sulfur species. C, H, O, S, N, and P were measured directly as key biogenic elements, and by inference N and P are assumed to have been available. The environment likely had a minimum duration of hundreds to tens of thousands of years. These results highlight the biological viability of fluvial-lacustrine environments in the post-Noachian history of Mars

    X-ray Diffraction Results from Mars Science Laboratory: Mineralogy of Rocknest at Gale Crater

    Get PDF
    The Mars Science Laboratory rover Curiosity scooped samples of soil from the Rocknest aeolian bedform in Gale crater. Analysis of the soil with the Chemistry and Mineralogy (CheMin) x-ray diffraction (XRD) instrument revealed plagioclase (~An57), forsteritic olivine (~Fo62), augite, and pigeonite, with minor K-feldspar, magnetite, quartz, anhydrite, hematite, and ilmenite. The minor phases are present at, or near, detection limits. The soil also contains 27 ± 14 weight percent x-ray amorphous material, likely containing multiple Fe^(3+)- and volatile-bearing phases, including possibly a substance resembling hisingerite. The crystalline component is similar to the normative mineralogy of certain basaltic rocks from Gusev crater on Mars and of martian basaltic meteorites. The amorphous component is similar to that found on Earth in places such as soils on the Mauna Kea volcano, Hawaii

    Epitaxial growth of Si1-x-yGexCy alloy layers on (100)Si by rapid thermal chemical vapor deposition using methylsilane

    No full text
    High quality pseudomorphic Si1-yCy and Si1-x-yGexCy layers were grown on (100) Si between 530 and 650 degrees C by rapid thermal chemical vapor deposition in the SiH4/GeH4/SiH3CH3/H-2 system. These layers contained up to 30 at. % Ge and up to 2.2 at. % C. Strain engineering was achieved. The strain could be tailored continuously from compressive (up to 2.2% in Si1-xGex) to tensile (up to -0.8% in Si1-yCy and -0.35% in Si1-x-yGexCy). The relationship between the process parameters and the physical properties of the layers was investigated. A process window for growing high quality layers was defined in terms of the partial pressures of SiH4 and SiH3CH3. It was found to be independent of Ge content, growth temperature, and growth rate. No carbon contamination was observed. No interference between Ge and C incorporation was observed. A model for the incorporation of substitutional C in the films which is based on the chemical reaction of SiH4 and SiH3CH3 on the surface is proposed. (C) 1996 American Vacuum Society
    corecore