2,120 research outputs found

    Autonomic pain responses during sleep: a study of heart rate variability

    Get PDF
    The autonomic nervous system (ANS) reacts to nociceptive stimulation during sleep, but whether this reaction is contingent to cortical arousal, and whether one of the autonomic arms (sympathetic/parasympathetic) predominates over the other remains unknown. We assessed ANS reactivity to nociceptive stimulation during all sleep stages through heart rate variability, and correlated the results with the presence of cortical arousal measured in concomitant 32-channel EEG. Fourteen healthy volunteers underwent whole-night polysomnography during which nociceptive laser stimuli were applied over the hand. RR intervals (RR) and spectral analysis by wavelet transform were performed to assess parasympathetic (HF(WV)) and sympathetic (LF(WV) and LF(WV)/HF(WV) ratio) reactivity. During all sleep stages, RR significantly decreased in reaction to nociceptive stimulations, reaching a level similar to that of wakefulness, at the 3rd beat post-stimulus and returning to baseline after seven beats. This RR decrease was associated with an increase in sympathetic LF(WV) and LF(WV)/HF(WV) ratio without any parasympathetic HF(WV) change. Albeit RR decrease existed even in the absence of arousals, it was significantly higher when an arousal followed the noxious stimulus. These results suggest that the sympathetic-dependent cardiac activation induced by nociceptive stimuli is modulated by a sleep dependent phenomenon related to cortical activation and not by sleep itself, since it reaches a same intensity whatever the state of vigilance

    Measurement of Resonance Parameters of Orbitally Excited Narrow B^0 Mesons

    Get PDF
    We report a measurement of resonance parameters of the orbitally excited (L=1) narrow B^0 mesons in decays to B^{(*)+}\pi^- using 1.7/fb of data collected by the CDF II detector at the Fermilab Tevatron. The mass and width of the B^{*0}_2 state are measured to be m(B^{*0}_2) = 5740.2^{+1.7}_{-1.8}(stat.) ^{+0.9}_{-0.8}(syst.) MeV/c^2 and \Gamma(B^{*0}_2) = 22.7^{+3.8}_{-3.2}(stat.) ^{+3.2}_{-10.2}(syst.) MeV/c^2. The mass difference between the B^{*0}_2 and B^0_1 states is measured to be 14.9^{+2.2}_{-2.5}(stat.) ^{+1.2}_{-1.4}(syst.) MeV/c^2, resulting in a B^0_1 mass of 5725.3^{+1.6}_{-2.2}(stat.) ^{+1.4}_{-1.5}(syst.) MeV/c^2. This is currently the most precise measurement of the masses of these states and the first measurement of the B^{*0}_2 width.Comment: 7 pages, 1 figure, 1 table. Submitted to Phys.Rev.Let

    Measurement of the fraction of t-tbar production via gluon-gluon fusion in p-pbar collisions at sqrt(s)=1.96 TeV

    Get PDF
    We present a measurement of the ratio of t-tbar production cross section via gluon-gluon fusion to the total t-tbar production cross section in p-pbar collisions at sqrt{s}=1.96 TeV at the Tevatron. Using a data sample with an integrated luminosity of 955/pb recorded by the CDF II detector at Fermilab, we select events based on the t-tbar decay to lepton+jets. Using an artificial neural network technique we discriminate between t-tbar events produced via q-qbar annihilation and gluon-gluon fusion, and find Cf=(gg->ttbar)/(pp->ttbar)<0.33 at the 68% confidence level. This result is combined with a previous measurement to obtain the most precise measurement of this quantity, Cf=0.07+0.15-0.07.Comment: submitted to Phys. Rev.

    An up-date on the prevalence of sickle cell trait in Eastern and Western Uganda

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The first survey on sickle cell disease (SCD) done in Uganda in 1949, reported the district of Bundibugyo in Western Uganda to have the highest sickle cell trait (SCT) prevalence (45%). This is believed to be the highest in the whole world. According to the same survey, the prevalence of SCT in the districts of Mbale and Sironko in the East was 20-28%, whilst the districts of Mbarara and Ntungamo in the West had 1-5%. No follow-up surveys have been conducted over the past 60 years. SCA accounts for approximately 16.2% of all pediatric deaths in Uganda. The pattern of SCT inheritance, however, predicts likely changes in the prevalence and distribution of the SCT. The objective of the study therefore was to establish the current prevalence of the SCT in Uganda.</p> <p>Methods</p> <p>This study was a cross sectional survey which was carried out in the districts of Mbale and Sironko in the Eastern, Mbarara/Ntungamo and Bundibugyo in Western Uganda. The participants were children (6 months-5 yrs). Blood was collected from each subject and analyzed for hemoglobin S using cellulose acetate Hb electrophoresis.</p> <p>Results</p> <p>The established prevalence of the SCT (As) in Eastern Uganda was 17.5% compared to 13.4% and 3% in Bundibugyo and Mbarara/Ntungamo respectively. 1.7% of the children in Eastern Uganda tested positive for haemoglobin ss relative to 3% in Bundibugyo, giving gene frequencies of 0.105 and 0.097 for the recessive gene respectively. No ss was detected in Mbarara/Ntungamo.</p> <p>Conclusions</p> <p>A shift in the prevalence of the SCT and ss in Uganda is notable and may be explained by several biological and social factors. This study offers some evidence for the possible outcome of intermarriages in reducing the incidence of the SCT.</p

    Top Quark Mass Measurement in the Lepton plus Jets Channel Using a Modified Matrix Element Method

    Get PDF
    46 pages, 16 figures. Edited in response to referee comments and resubmitted to Phys. Rev. DWe report a measurement of the top quark mass, m_t, obtained from ppbar collisions at sqrt(s) = 1.96 TeV at the Fermilab Tevatron using the CDF II detector. We analyze a sample corresponding to an integrated luminosity of 1.9 fb^-1. We select events with an electron or muon, large missing transverse energy, and exactly four high-energy jets in the central region of the detector, at least one of which is tagged as coming from a b quark. We calculate a signal likelihood using a matrix element integration method, with effective propagators to take into account assumptions on event kinematics. Our event likelihood is a function of m_t and a parameter JES that determines /in situ/ the calibration of the jet energies. We use a neural network discriminant to distinguish signal from background events. We also apply a cut on the peak value of each event likelihood curve to reduce the contribution of background and badly reconstructed events. Using the 318 events that pass all selection criteria, we find m_t = 172.7 +/- 1.8 (stat. + JES) +/- 1.2 (syst.) GeV/c^2.We report a measurement of the top quark mass, mt, obtained from pp̅ collisions at √s=1.96  TeV at the Fermilab Tevatron using the CDF II detector. We analyze a sample corresponding to an integrated luminosity of 1.9  fb-1. We select events with an electron or muon, large missing transverse energy, and exactly four high-energy jets in the central region of the detector, at least one of which is tagged as coming from a b quark. We calculate a signal likelihood using a matrix element integration method, where the matrix element is modified by using effective propagators to take into account assumptions on event kinematics. Our event likelihood is a function of mt and a parameter JES (jet energy scale) that determines in situ the calibration of the jet energies. We use a neural network discriminant to distinguish signal from background events. We also apply a cut on the peak value of each event likelihood curve to reduce the contribution of background and badly reconstructed events. Using the 318 events that pass all selection criteria, we find mt=172.7±1.8(stat+JES)±1.2(syst)  GeV/c2.Peer reviewe

    Search for Long-Lived Massive Charged Particles in 1.96 TeV \bar{p}p} Collisions

    Get PDF
    16 pages, 2 figures; Revision to fix PDF errors on some displays/printersWe performed a signature-based search for long-lived charged massive particles (CHAMPs) produced in 1.0 fb1\rm{fb}^{-1} of pˉp\bar{p}p collisions at s=1.96\sqrt{s}=1.96 TeV, collected with the CDF II detector using a high transverse-momentum (pTp_T) muon trigger. The search used time-of-flight to isolate slowly moving, high-pTp_T particles. One event passed our selection cuts with an expected background of 1.9±0.21.9 \pm 0.2 events. We set an upper bound on the production cross section, and, interpreting this result within the context of a stable scalar top quark model, set a lower limit on the particle mass of 249 GeV/c2c^2 at 95% C.L.We performed a signature-based search for long-lived charged massive particles produced in 1.0  fb-1 of pp̅ collisions at √s=1.96  TeV, collected with the CDF II detector using a high transverse-momentum (pT) muon trigger. The search used time of flight to isolate slowly moving, high-pT particles. One event passed our selection cuts with an expected background of 1.9±0.2 events. We set an upper bound on the production cross section and, interpreting this result within the context of a stable scalar top-quark model, set a lower limit on the particle mass of 249  GeV/c2 at 95% C.L.Peer reviewe

    Search for WW and WZ production in lepton plus jets final state at CDF

    Get PDF
    submitted to Phys. Rev. D (RC)We present a search for WW and WZ production in final states that contain a charged lepton (electron or muon) and at least two jets, produced in sqrt(s) = 1.96 TeV ppbar collisions at the Fermilab Tevatron, using data corresponding to 1.2 fb-1 of integrated luminosity collected with the CDF II detector. Diboson production in this decay channel has yet to be observed at hadron colliders due to the large single W plus jets background. An artificial neural network has been developed to increase signal sensitivity, as compared with an event selection based on conventional cuts. We set a 95% confidence level upper limit of sigma_{WW}* BR(W->lnu,W->jets)+ sigma_{WZ}*BR(W->lnu,Z->jets)We present a search for WW and WZ production in final states that contain a charged lepton (electron or muon) and at least two jets, produced in √s=1.96  TeV pp̅ collisions at the Fermilab Tevatron, using data corresponding to 1.2  fb-1 of integrated luminosity collected with the CDF II detector. Diboson production in this decay channel has yet to be observed at hadron colliders due to the large single W plus jets background. An artificial neural network has been developed to increase signal sensitivity, as compared with an event selection based on conventional cuts. We set a 95% confidence level upper limit of σWW×BR(W→ℓνℓ,W→jets)+σWZ×BR(W→ℓνℓ,Z→jets)<2.88  pb, which is consistent with the standard model next-to-leading-order cross section calculation for this decay channel of 2.09±0.12  pb.Peer reviewe

    Search for a Higgs Boson Decaying to Two W Bosons at CDF

    Get PDF
    We present a search for a Higgs boson decaying to two W bosons in ppbar collisions at sqrt(s)=1.96 TeV center-of-mass energy. The data sample corresponds to an integrated luminosity of 3.0 fb-1 collected with the CDF II detector. We find no evidence for production of a Higgs boson with mass between 110 and 200 GeV/c^2, and determine upper limits on the production cross section. For the mass of 160 GeV/c^2, where the analysis is most sensitive, the observed (expected) limit is 0.7 pb (0.9 pb) at 95% Bayesian credibility level which is 1.7 (2.2) times the standard model cross section

    A search for high-mass resonances decaying to dimuons at CDF

    Get PDF
    We present a search for high-mass neutral resonances using dimuon data corresponding to an integrated luminosity of 2.3 fb1^{-1} collected in {ppˉp\bar p} collisions at {s\sqrt{s} = 1.96 TeV} by the CDF II detector at the Fermilab Tevatron. No significant excess above the standard model expectation is observed in the dimuon invariant-mass spectrum. We set 95% confidence level upper limits on σBR(ppˉXμμˉ)\sigma \cdot BR (p \bar{p} \to X \to \mu \bar{\mu}), where XX is a boson with spin 0, 1, or 2. Using these cross section limits, we determine lower mass limits on sneutrinos in R-parity-violating supersymmetric models, ZZ' bosons, and Kaluza-Klein gravitons in the Randall-Sundrum model.We present a search for high-mass neutral resonances using dimuon data corresponding to an integrated luminosity of 2.3  fb-1 collected in pp̅ collisions at √s=1.96  TeV by the CDF II detector at the Fermilab Tevatron. No significant excess above the standard model expectation is observed in the dimuon invariant-mass spectrum. We set 95% confidence level upper limits on σBR(pp̅ →X→μμ̅ ), where X is a boson with spin-0, 1, or 2. Using these cross section limits, we determine lower mass limits on sneutrinos in R-parity-violating supersymmetric models, Z′ bosons, and Kaluza-Klein gravitons in the Randall-Sundrum model.Peer reviewe

    Search for Top-Quark Production via Flavor-Changing Neutral Currents in W+1 Jet Events at CDF

    Get PDF
    We report on a search for the non-standard-model process u(c)+g -> t using pp collision data collected by the Collider Detector at Fermilab II detector corresponding to 2.2 fb(-1). The candidate events are classified as signal-like or backgroundlike by an artificial neural network. The observed discriminant distribution yields no evidence for flavor-changing neutral current top-quark production, resulting in an upper limit on the production cross section sigma(u(c)+g -> t) u+g) c+g)< 5.7x10(-3).The authors express their gratitude to Chong Sheng Li of Peking University for very useful communication and for providing a new calculation of FCNC top-quark branching ratios in a very timely fashion. We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A.P. Sloan Foundation; the Bundesministerium für Bildung und Forschung, Germany; the Korean Science and Engineering Foundation and the Korean Research Foundation; the Science and Technology Facilities Council and the Royal Society, UK; the Institut National de Physique Nucleaire et Physique des Particules/CNRS; the Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovación, and Programa Consolider-Ingenio 2010, Spain; the Slovak R&D Agency; and the Academy of Finland.Peer reviewe
    corecore