117 research outputs found

    A causal look into the quantum Talbot effect

    Get PDF
    A well-known phenomenon in both optics and quantum mechanics is the so-called Talbot effect. This near field interference effect arises when infinitely periodic diffracting structures or gratings are illuminated by highly coherent light or particle beams. Typical diffraction patterns known as quantum carpets are then observed. Here the authors provide an insightful picture of this nonlocal phenomenon as well as its classical limit in terms of Bohmian mechanics, also showing the causal reasons and conditions that explain its appearance. As an illustration, theoretical results obtained from diffraction of thermal He atoms by both N-slit arrays and weak corrugated surfaces are analyzed and discussed. Moreover, the authors also explain in terms of what they call the Talbot-Beeby effect how realistic interaction potentials induce shifts and distortions in the corresponding quantum carpets.Comment: 12 pages, 6 figure

    Quantum Zeno-based control mechanism for molecular fragmentation

    Get PDF
    A quantum control mechanism is proposed for molecular fragmentation processes within a scenario grounded on the quantum Zeno effect. In particular, we focus on the van der Waals Ne-Br2_2 complex, which displays two competing dissociation channels via vibrational and electronic predissociation. Accordingly, realistic three dimensional wave packet simulations are carried out by using ab initio interaction potentials recently obtained to reproduce available experimental data. Two numerical models to simulate the repeated measurements are reported and analyzed. It is found that the otherwise fast vibrational predissociation is slowed down in favor of the slow electronic (double fragmentation) predissociation, which is enhanced by several orders of magnitude. Based on these theoretical predictions, some hints to experimentalists to confirm their validity are also proposed.Comment: 4 pages, 3 figure

    Quantum Zeno and anti-Zeno effects in surface diffusion of interacting adsorbates

    Get PDF
    Surface diffusion of interacting adsorbates is here analyzed within the context of two fundamental phenomena of quantum dynamics, namely the quantum Zeno effect and the anti-Zeno effect. The physical implications of these effects are introduced here in a rather simple and general manner within the framework of non-selective measurements and for two (surface) temperature regimes: high and very low (including zero temperature). The quantum intermediate scattering function describing the adsorbate diffusion process is then evaluated for flat surfaces, since it is fully analytical in this case. Finally, a generalization to corrugated surfaces is also discussed. In this regard, it is found that, considering a Markovian framework and high surface temperatures, the anti-Zeno effect has already been observed, though not recognized as such.Comment: 17 pages, 1 figur

    Line Shape Broadening in Surface Diffusion of Interacting Adsorbates with Quasielastic He Atom Scattering

    Get PDF
    The experimental line shape broadening observed in adsorbate diffusion on metal surfaces with increasing coverage is usually related to the nature of the adsorbate-adsorbate interaction. Here we show that this broadening can also be understood in terms of a fully stochastic model just considering two noise sources: (i) a Gaussian white noise accounting for the surface friction, and (ii) a shot noise replacing the physical adsorbate-adsorbate interaction potential. Furthermore, contrary to what could be expected, for relatively weak adsorbate-substrate interactions the opposite effect is predicted: line shapes get narrower with increasing coverage.Comment: 4 pages, 2 figures (slightly revised version

    Shift in social media app usage during covid-19 lockdown and clinical anxiety symptoms: Machine learning-based ecological momentary assessment study

    Get PDF
    Background: Anxiety symptoms during public health crises are associated with adverse psychiatric outcomes and impaired health decision-making. The interaction between real-time social media use patterns and clinical anxiety during infectious disease outbreaks is underexplored. Objective: We aimed to evaluate the usage pattern of 2 types of social media apps (communication and social networking) among patients in outpatient psychiatric treatment during the COVID-19 surge and lockdown in Madrid, Spain and their short-term anxiety symptoms (7-item General Anxiety Disorder scale) at clinical follow-up. Methods: The individual-level shifts in median social media usage behavior from February 1 through May 3, 2020 were summarized using repeated measures analysis of variance that accounted for the fixed effects of the lockdown (prelockdown versus postlockdown), group (clinical anxiety group versus nonclinical anxiety group), the interaction of lockdown and group, and random effects of users. A machine learning–based approach that combined a hidden Markov model and logistic regression was applied to predict clinical anxiety (n=44) and nonclinical anxiety (n=51), based on longitudinal time-series data that comprised communication and social networking app usage (in seconds) as well as anxiety-associated clinical survey variables, including the presence of an essential worker in the household, worries about life instability, changes in social interaction frequency during the lockdown, cohabitation status, and health status. Results: Individual-level analysis of daily social media usage showed that the increase in communication app usage from prelockdown to lockdown period was significantly smaller in the clinical anxiety group than that in the nonclinical anxiety group (F1,72=3.84, P=.05). The machine learning model achieved a mean accuracy of 62.30% (SD 16%) and area under the receiver operating curve 0.70 (SD 0.19) in 10-fold cross-validation in identifying the clinical anxiety group. Conclusions: Patients who reported severe anxiety symptoms were less active in communication apps after the mandated lockdown and more engaged in social networking apps in the overall period, which suggested that there was a different pattern of digital social behavior for adapting to the crisis. Predictive modeling using digital biomarkers—passive-sensing of shifts in category-based social media app usage during the lockdown—can identify individuals at risk for psychiatric sequelae.JR was supported by the American Psychiatric Association 2021 Junior Psychiatrist Research Colloquium (NIDA R-13 grant). ES received funding from the European Union Horizon 2020 research and innovation program (Marie Sklodowska-Curie grant 813533). AA is supported by the Spanish Ministerio de Ciencia, Innovación y Universidades (RTI2018-099655-B-I00), the Comunidad de Madrid (Y2018/TCS-4705 PRACTICO-CM), and the BBVA Foundation (Deep-DARWiN grant)

    Emulating opportunistic networks with KauNet Triggers

    Get PDF
    In opportunistic networks the availability of an end-to-end path is no longer required. Instead opportunistic networks may take advantage of temporary connectivity opportunities. Opportunistic networks present a demanding environment for network emulation as the traditional emulation setup, where application/transport endpoints only send and receive packets from the network following a black box approach, is no longer applicable. Opportunistic networking protocols and applications additionally need to react to the dynamics of the underlying network beyond what is conveyed through the exchange of packets. In order to support IP-level emulation evaluations of applications and protocols that react to lower layer events, we have proposed the use of emulation triggers. Emulation triggers can emulate arbitrary cross-layer feedback and can be synchronized with other emulation effects. After introducing the design and implementation of triggers in the KauNet emulator, we describe the integration of triggers with the DTN2 reference implementation and illustrate how the functionality can be used to emulate a classical DTN data-mule scenario

    Analysis of a three-component model phase diagram by Catastrophe Theory

    Full text link
    We analyze the thermodynamical potential of a lattice gas model with three components and five parameters using the methods of Catastrophe Theory. We find the highest singularity, which has codimension five, and establish its transversality. Hence the corresponding seven-degree Landau potential, the canonical form Wigwam or A6A_6, constitutes the adequate starting point to study the overall phase diagram of this model.Comment: 16 pages, Latex file, submitted to Phys. Rev.

    Quality changes and shelf-life prediction of a fresh fruit and vegetables purple smoothie

    Get PDF
    The sensory, microbial and bioactive quality changes of untreated (CTRL) and mild heat−treated (HT; 90 ºC/45 s) smoothies were studied and modelled throughout storage (5, 15 and 25 ºC). The overall acceptability was better preserved in HT samples being highly correlated (hierarchical clustering) with the flavour. The sensory quality data estimated smoothie shelf−life (CTRL/HT) of 18/55 (at 5 ºC), 4.5/12 (at 15 ºC), 2.4/5.8 (at 25 ºC) days. The yeast and moulds growth rate was lower in HT compared to CTRL while a lag phase for mesophiles/psychrophiles was observed in HT−5/15 ºC. HT and 5 ºC−storage stabilized the phenolics content. FRAP reported the best correlation (R2=0.94) with the studied bioactive compounds, followed by ABTS (R2=0.81) while DPPH was the total antioxidant capacity method with the lowest adjustment (R2=0.49). Conclusively, modelling was used to estimate the shelf−life of a smoothie based on quality retention after a short time−high temperature heat treatment that better preserved microbial and nutritional quality during storage.The financial support of this research was provided by the Ministerio Español de Economía y Competitividad MINECO (Projects AGL2013−48830−C2−1−R and AGL2013−48993−C2−1−R) and by FEDER funds. G.A. González−Tejedor thanks to Panamá Government for the scholarship to carry out his PhD Thesis. A. Garre (BES−2014−070946) is grateful to the MINECO for awarding him a pre−doctoral grant. We are also grateful to E. Esposito and N. Castillejo for their skilful technical assistance
    corecore