326 research outputs found

    Der Grünauslauf als Futterquelle

    Get PDF
    Der Grünauslauf verbessert nicht nur die Gesundheit der Tiere und die Qualität der Eier. Er kann, wenn er optimal eingerichtet ist, auch zu einer Einsparung am Mischfutter führen

    Measuring The Mass Loss Evolution at The Tip of The Asymptotic Giant Branch

    Full text link
    In the final stages of stellar evolution low- to intermediate-mass stars lose their envelope in increasingly massive stellar winds. Such winds affect the interstellar medium and the galactic chemical evolution as well as the circumstellar envelope where planetary nebulae form subsequently. Characteristics of this mass loss depend on both stellar properties and properties of gas and dust in the wind formation region. In this paper we present an approach towards studies of mass loss using both observations and models, focusing on the stage where the stellar envelope is nearly empty of mass. In a recent study we measure the mass-loss evolution, and other properties, of four planetary nebulae in the Galactic Disk. Specifically we use the method of integral field spectroscopy on faint halos, which are found outside the much brighter central parts of a planetary nebula. We begin with a brief comparison between our and other observational methods to determine mass-loss rates in order to illustrate how they differ and complement each other. An advantage of our method is that it measures the gas component directly requiring no assumptions of properties of dust in the wind. Thereafter we present our observational approach in more detail in terms of its validity and its assumptions. In the second part of this paper we discuss capabilities and assumptions of current models of stellar winds. We propose and discuss improvements to such models that will allow meaningful comparisons with our observations. Currently the physically most complete models include too little mass in the model domain to permit a formation of winds with as high mass-loss rates as our observations show.Comment: 7 pages, workshop in honour of Agnes Acker, Legacies of the Macquarie/AAO/Strasbourg Halpha Planetary Nebula project, ed. Q.Parker and D.Frew, PASA, in press; clarified some parts and added some additional reference

    Autowaves in a dc complex plasma confined behind a de Laval nozzle

    Full text link
    Experiments to explore stability conditions and topology of a dense microparticle cloud supported against gravity by a gas flow were carried out. By using a nozzle shaped glass insert within the glass tube of a dc discharge plasma chamber a weakly ionized gas flow through a de Laval nozzle was produced. The experiments were performed using neon gas at a pressure of 100 Pa and melamine-formaldehyde particles with a diameter of 3.43 {\mu}m. The capturing and stable global confining of the particles behind the nozzle in the plasma were demonstrated. The particles inside the cloud behaved as a single convection cell inhomogeneously structured along the nozzle axis in a tube-like manner. The pulsed acceleration localized in the very head of the cloud mediated by collective plasma-particle interactions and the resulting wave pattern were studied in detail.Comment: 6 pages, 4 figure

    A random laser as a dynamical network

    Get PDF
    The mode dynamics of a random laser is investigated in experiment and theory. The laser consists of a ZnCdO/ZnO multiple quantum well with air-holes that provide the necessary feedback. Time-resolved measurements reveal multi-mode spectra with individually developing features but no variation from shot to shot. These findings are qualitatively reproduced with a model that exploits the specifics of a dilute system of weak scatterers and can be interpreted in terms of a lasing network. Introducing the phase-sensitive node coherence reveals new aspects of the self-organization of the laser field. Lasing is carried by connected links between a subset of scatterers, the fields on which are oscillating coherently in phase. In addition, perturbing feedback with possibly unfitting phases from frustrated other scatterers is suppressed by destructive superposition. We believe that our findings are representative at least for weakly scattering random lasers. A generalization to random laser with dense and strong scatterers seems to be possible when using a more complex scattering theory for this case.Peer Reviewe

    Abundance analysis for long period variables. Velocity effects studied with O-rich dynamic model atmospheres

    Full text link
    (abbreviated) Measuring the surface abundances of AGB stars is an important tool for studying the effects of nucleosynthesis and mixing in the interior of low- to intermediate mass stars during their final evolutionary phases. The atmospheres of AGB stars can be strongly affected by stellar pulsation and the development of a stellar wind, though, and the abundance determination of these objects should therefore be based on dynamic model atmospheres. We investigate the effects of stellar pulsation and mass loss on the appearance of selected spectral features (line profiles, line intensities) and on the derived elemental abundances by performing a systematic comparison of hydrostatic and dynamic model atmospheres. High-resolution synthetic spectra in the near infrared range were calculated based on two dynamic model atmospheres (at various phases during the pulsation cycle) as well as a grid of hydrostatic COMARCS models. Equivalent widths of a selection of atomic and molecular lines were derived in both cases and compared with each other. In the case of the dynamic models, the equivalent widths of all investigated features vary over the pulsation cycle. A consistent reproduction of the derived variations with a set of hydrostatic models is not possible, but several individual phases and spectral features can be reproduced well with the help of specific hydrostatic atmospheric models. In addition, we show that the variations in equivalent width that we found on the basis of the adopted dynamic model atmospheres agree qualitatively with observational results for the Mira R Cas over its light cycle. The findings of our modelling form a starting point to deal with the problem of abundance determination in strongly dynamic AGB stars (i.e., long-period variables).Comment: 13 pages, 22 figures, accepted for publication in A&

    The mass-loss return from evolved stars to the Large Magellanic Cloud V. The GRAMS carbon-star model grid

    Full text link
    The total dust return rate from AGB and RSG star outflows is an important constraint to galactic chemical evolution models. However, this requires detailed radiative transfer (RT) modeling of individual stars, which becomes impractical for large data sets. Another approach is to select the best-fit spectral energy distribution (SED) from a grid of dust shell models, allowing for a faster determination of the luminosities and mass-loss rates for entire samples. We have developed the Grid of RSG and AGB ModelS (GRAMS) to measure the mass-loss return from evolved stars. The models span the range of stellar, dust shell and grain properties relevant to evolved stars. In this paper we present the carbon-star grid and compare our results with data of Large Magellanic Cloud (LMC) carbon stars from the SAGE and SAGE-Spec programs. We generate spherically symmetric dust shell models using the 2Dust code, with hydrostatic models for the central stars. We explore five values of the inner radius R_in of the dust shell (1.5, 3, 4.5, 7 and 12 R_star). We use amorphous carbon dust mixed with 10% silicon carbide by mass. The grain sizes follows a KMH distribution. The models span 26 values of 11.3 um optical depth, ranging from 0.001 to 4. For each model, 2Dust calculates the output SED from 0.2 to 200 um. Over 12,000 models have dust temperatures below 1800 K. The GRAMS synthetic photometry is in good agreement with SAGE photometry for LMC carbon-rich and extreme AGB star candidates, as well as spectroscopically confirmed carbon stars from the SAGE-Spec study. Our models reproduce the IRAC colors of most of the extreme AGB star candidates, consistent with the expectation that a majority of these enshrouded stars have carbon-rich dust. Finally, we fit the SEDs of some well-studied carbon stars and compare the resulting luminosities and mass-loss rates with those from previous studies.Comment: 16 pages, 13 figures, accepted for publication in Astronomy & Astrophysic

    The time variation in infrared water-vapour bands in Mira variables

    Get PDF
    The time variation in the water-vapour bands in oxygen-rich Mira variables has been investigated using multi-epoch ISO/SWS spectra of four Mira variables in the 2.5-4.0 micron region. All four stars show H2O bands in absorption around minimum in the visual light curve. At maximum, H2O emission features appear in the ~3.5-4.0 micronm region, while the features at shorter wavelengths remain in absorption. These H2O bands in the 2.5-4.0 micron region originate from the extended atmosphere. The analysis has been carried out with a disk shape, slab geometry model. The observed H2O bands are reproduced by two layers; a `hot' layer with an excitation temperature of 2000 K and a `cool' layer with an excitation temperature of 1000-1400 K. The radii of the `hot' layer (R_hot) are ~1 R_* at visual minimum and 2 R_* at maximum, where R_* is a radius of background source of the model. The time variation of R_hot/R_* from 1 to 2 is attributed to the actual variation in the radius of the H2O layer. A high H2O density shell occurs near the surface of the star around minimum, and moves out with the stellar pulsation. This shell gradually fades away after maximum, and a new high H2O density shell is formed in the inner region again at the next minimum. Due to large optical depth of H2O, the near-infrared variability is dominated by the H2O layer, and the L'-band flux correlates with the area of the H2O shell. The infrared molecular bands trace the structure of the extended atmosphere and impose appreciable effects on near-infrared light curve of Mira variables.Comment: 15 pages, 16 figures, accepted by A&

    Radio and IR interferometry of SiO maser stars

    Full text link
    Radio and infrared interferometry of SiO maser stars provide complementary information on the atmosphere and circumstellar environment at comparable spatial resolution. Here, we present the latest results on the atmospheric structure and the dust condensation region of AGB stars based on our recent infrared spectro-interferometric observations, which represent the environment of SiO masers. We discuss, as an example, new results from simultaneous VLTI and VLBA observations of the Mira variable AGB star R Cnc, including VLTI near- and mid-infrared interferometry, as well as VLBA observations of the SiO maser emission toward this source. We present preliminary results from a monitoring campaign of high-frequency SiO maser emission toward evolved stars obtained with the APEX telescope, which also serves as a precursor of ALMA images of the SiO emitting region. We speculate that large-scale long-period chaotic motion in the extended molecular atmosphere may be the physical reason for observed deviations from point symmetry of atmospheric molecular layers, and for the observed erratic variability of high-frequency SiO maser emissionComment: 8 pages, 4 figures, submitted to Proc. IAU Symp. 287 "Cosmic masers - from OH to H_0", R.S. Booth, E.M.L. Humphreys, W.H.T. Vlemmings (eds.), invited pape
    corecore