196 research outputs found

    A 2D pixelated stilbene scintillator detector array for simultaneous radiography with fast neutrons and gammas

    Full text link
    For radiography applications using fast neutrons simultaneously with gammas we have developed a detector with 16 stilbene crystals in a 4×\times4 2D array with a 5~mm pitch and a depth of 25~mm. The crystal array is read out by Silicon photomultipliers and custom signal processing electronics. The detector prototype was tested using a custom D-D fast neutron generator at the Paul Scherrer Institute. By applying a pulse shape discrimination algorithm the detector is able to detect and distinguish fast neutrons and gammas simultaneously. Various attenuating samples placed between the source and detector with different materials and thicknesses were tested and the measured macroscopic fast neutron cross sections were compared to what was expected. Deviations were studied with the help of detailed Geant4 simulations. The detection efficiency for D-D fast neutrons was measured to be around 10\%.Comment: Prepared for submission to JINST. Changes compared to previous version: article was edited due to JINST referee feedback (minor revision requested). Figure 3 was updated. Formulations were improved, some explanations were given in more detail. Reference list was updated (reference 15 was exchanged

    A novel copper precursor for electron beam induced deposition

    Get PDF
    A fluorine free copper precursor, Cu(tbaoac)2 with the chemical sum formula CuC16O6H26 is introduced for focused electron beam induced deposition (FEBID). FEBID with 15 keV and 7 nA results in deposits with an atomic composition of Cu:O:C of approximately 1:1:2. Transmission electron microscopy proved that pure copper nanocrystals with sizes of up to around 15 nm were dispersed inside the carbonaceous matrix. Raman investigations revealed a high degree of amorphization of the carbonaceous matrix and showed hints for partial copper oxidation taking place selectively on the surfaces of the deposits. Optical transmission/reflection measurements of deposited pads showed a dielectric behavior of the material in the optical spectral range. The general behavior of the permittivity could be described by applying the Maxwell–Garnett mixing model to amorphous carbon and copper. The dielectric function measured from deposited pads was used to simulate the optical response of tip arrays fabricated out of the same precursor and showed good agreement with measurements. This paves the way for future plasmonic applications with copper-FEBID

    Properties of the ultraviolet flux of type Ia supernovae: an analysis with synthetic spectra of SN 2001ep and SN 2001eh

    Full text link
    The spectral properties of type Ia supernovae in the ultraviolet (UV) are investigated using the early-time spectra of SN 2001ep and SN 2001eh obtained using the Hubble Space Telescope (HST). A series of spectral models is computed with a Monte Carlo spectral synthesis code, and the dependence of the UV flux on the elemental abundances and the density gradient in the outer layers of the ejecta is tested. A large fraction of the UV flux is formed by reverse fluorescence scattering of photons from red to blue wavelengths. This process, combined with ionization shifts due to enhanced line blocking, can lead to a stronger UV flux as the iron-group abundance in the outer layers is increased, contrary to previous claims.Comment: 14 pages, 13 figures. Replaced with revised version accepted for publication in MNRA

    Neutral and charged excitons interplay in non-uniformly strain-engineered WS2

    Get PDF
    We investigate the response of excitons in two-dimensional semiconductors to nonuniformity of mechanical strain. In our approach to non-uniform strain-engineering, a WS2 monolayer is suspended over a triangular hole. Large (>2%), strongly non-uniform (>0.28% ”m–1), and in-situ tunable strain is induced in WS2 by pressurizing it with inert gas. We observe a pronounced shift of the spectral weight from neutral to charged excitons at the center of the membrane, in addition to well-known strain-dependent bandgap modification. We show that the former phenomenon is a signature of a new effect unique for non-uniform strain: funneling of free carriers towards the region of high strain followed by neutral to charged exciton conversion. Our result establishes non-uniform strain engineering as a novel and useful experimental 'knob' for tuning optoelectronic properties of 2D semiconductors

    Towards tunable graphene phononic crystals

    Get PDF
    Phononic crystals (PnCs) are artificially patterned media exhibiting bands of allowed and forbidden zones for phonons—in analogy to the electronic band structure of crystalline solids arising from the periodic arrangement of atoms. Many emerging applications of PnCs from solid-state simulators to quantum memories could benefit from the on-demand tunability of the phononic band structure. Here, we demonstrate the fabrication of suspended graphene PnCs in which the phononic band structure is controlled by mechanical tension applied electrostatically. We show signatures of a mechanically tunable phononic band gap. The experimental data supported by simulation suggests a phononic band gap at 28–33 MHz in equilibrium, which upshifts by 9 MHz under a mechanical tension of 3.1 N m−1. This is an essential step towards tunable phononics paving the way for more experiments on phononic systems based on 2D materials

    On the evolution of rapidly rotating massive white dwarfs towards supernovae or collapses

    Get PDF
    A recent study by Yoon & Langer (2004a) indicated that the inner cores of rapidly accreting (Mdot > 10^{-7} M_sun/yr) CO white dwarfs may rotate differentially, with a shear rate near the threshold value for the onset of the dynamical shear instability. Such differentially rotating white dwarfs obtain critical masses for thermonuclear explosion or electron-capture induced collapse which significantly exceed the canonical Chandrasekhar limit. Here, we construct two-dimensional differentially rotating white dwarf models with rotation laws resembling those of the one-dimensional models of Yoon & Langer (2004a). We derive analytic relations between the white dwarf mass, its angular momentum, and its rotational-, gravitational- and binding energy. We show that these relations are applicable for a wide range of angular velocity profiles, including solid body rotation. We demonstrate that pre-explosion and pre-collapse conditions of both, rigidly and differentially rotating white dwarfs are well established by the present work, which may facilitate future multi-dimensional simulations of Type Ia supernova explosions and studies of the formation of millisecond pulsars and gamma-ray bursts from collapsing white dwarfs.Our results lead us to suggest various possible evolutionary scenarios for progenitors of Type Ia supernovae, leading to a new paradigm of a variable mass of exploding white dwarfs, at values well above the classical Chandrasekhar mass. Based on our 2D-models, we argue for the supernova peak brightness being proportional to the white dwarf mass, which could explain various aspects of the diversity of Type Ia supernovae, such as their variation in brightness, the dependence of their mean luminosity on the host galaxy type, and the weak correlation between ejecta velocity and peak brightness.Comment: Based on 2-D white dwarf models: 19 pages, 13 figures, A&A, accepte

    The first binary star evolution model producing a Chandrasekhar mass white dwarf

    Full text link
    Today, Type Ia supernovae are essential tools for cosmology, and recognized as major contributors to the chemical evolution of galaxies. The construction of detailed supernova progenitor models, however, was so far prevented by various physical and numerical difficulties in simulating binary systems with an accreting white dwarf component, e.g., unstable helium shell burning which may cause significant expansion and mass loss. Here, we present the first binary evolution calculation which models both stellar components and the binary interaction simultaneously, and where the white dwarf mass grows up to the Chandrasekhar limit by mass accretion. Our model starts with a 1.6 Msun helium star and a 1.0 Msun CO white dwarf in a 0.124 day orbit. Thermally unstable mass transfer starts when the CO core of the helium star reaches 0.53 Msun, with mass transfer rates of 1...8 times 10^{-6} Msun/yr. The white dwarf burns the accreted helium steadily until the white dwarf mass has reached ~ 1.3 Msun and weak thermal pulses follow until carbon ignites in the center when the white dwarf reaches 1.37 Msun. Although the supernova production rate through this channel is not well known, and this channel can not be the only one as its progenitor life time is rather short (~ 10^7 - 10^8 yr), our results indicate that helium star plus white dwarf systems form a reliable route for producing Type Ia supernovae.Comment: 4 pages, 5 figure

    Interpreting the near-infrared spectra of the 'golden standard' Type Ia supernova 2005cf

    Get PDF
    We present nine near-infrared (NIR) spectra of supernova (SN) 2005cf at epochs from -10 d to +42 d with respect to B-band maximum, complementing the existing excellent data sets available for this prototypical Type Ia SN at other wavelengths. The spectra show a time evolution and spectral features characteristic of normal Type Ia SNe, as illustrated by a comparison with SNe 1999ee, 2002bo and 2003du. The broad-band spectral energy distribution (SED) of SN 2005cf is studied in combined ultraviolet (UV), optical and NIR spectra at five epochs between ~ 8 d before and ~ 10 d after maximum light. We also present synthetic spectra of the hydrodynamic explosion model W7, which reproduce the key properties of SN 2005cf not only at UV-optical as previously reported, but also at NIR wavelengths. From the radiative-transfer calculations we infer that fluorescence is the driving mechanism that shapes the SED of SNe Ia. In particular, the NIR part of the spectrum is almost devoid of absorption features, and instead dominated by fluorescent emission of both iron-group material and intermediate-mass elements at pre-maximum epochs, and pure iron-group material after maximum light. A single P-Cygni feature of Mg II at early epochs and a series of relatively unblended Co II lines at late phases allow us to constrain the regions of the ejecta in which the respective elements are abundant.Comment: 11 pages, 6 figures, accepted for publication in MNRA

    Circumstellar interaction of the type Ia supernova 2002ic

    Full text link
    We propose a model to account for the bolometric light curve, quasi-continuum and the Ca II emission features of the peculiar type Ia supernova (SN) 2002ic, which exploded in a dense circumstellar envelope. The model suggests that the SN Ia had the maximum possible kinetic energy and that the ejecta expand in an approximately spherically symmetric (possibly clumpy) circumstellar environment. The Ca II and quasi-continuum are emitted by shocked SN ejecta that underwent deformation and fragmentation in the intershock layer. Modeling of the Ca II triplet implies that the contribution of the O I 8446 A line is about 25% of the 8500 A feature on day 234, which permits us to recover the flux in the Ca II 8579 A triplet from the flux of 8500 A blend reported by Deng et al. (2004). We use the Ca II doublet and triplet fluxes on day 234 to derive the electron temperature (~4400 K) in the Ca II line-emitting zone and the ratio of the total area of dense fragments to the area of the shell, S/S_0 ~ 100. We argue that Ca II bands and quasi-continuum originate from different zones of the shocked ejecta that reflect the abundance stratification of the supernova.Comment: 12 pages, MNRAS, in pres

    Detection of CO and Dust Emission in Near-Infrared Spectra of SN 1998S

    Get PDF
    Near-infrared spectra (0.95 -- 2.4 micron) of the peculiar Type IIn supernova 1998S in NGC 3877 from 95 to 355 days after maximum light are presented. K-band data taken at days 95 and 225 show the presence of the first overtone of CO emission near 2.3 micron, which is gone by day 355. An apparent extended blue wing on the CO profile in the day 95 spectrum could indicate a large CO expansion velocity (~2000 -- 3000 km/s). This is the third detection of infrared CO emission in nearly as many Type II supernovae studied, implying that molecule formation may be fairly common in Type II events, and that the early formation of molecules in SN 1987A may be typical rather than exceptional. Multi-peak hydrogen and helium lines suggest that SN 1998S is interacting with a circumstellar disk, and the fading of the red side of this profile with time is suggestive of dust formation in the ejecta, perhaps induced by CO cooling. Continuum emission that rises towards longer wavelengths (J -> K) is seen after day 225 with an estimated near-infrared luminosity >~ 10^40 erg/s. This may be related to the near-infrared excesses seen in a number of other supernovae. If this continuum is due to free-free emission, it requires an exceptionally shallow density profile. On the other hand, the shape of the continuum is well fit by a 1200 +- 150 K blackbody spectrum possibly due to thermal emission from dust. Interestingly, we observe a similar 1200 K blackbody-like, near-infrared continuum in SN 1997ab, another Type IIn supernova at an even later post-maximum epoch (day 1064+). A number of dust emission scenarios are discussed, and we conclude that the NIR dust continuum is likely powered by the interaction of SN 1998S with the circumstellar medium.Comment: 38 Pages, 12 Figures, Submitted to The Astronomical Journa
    • 

    corecore