68 research outputs found

    Morphological and Physicochemical Characterization of Agglomerates of Titanium Dioxide Nanoparticles in Cell Culture Media

    Get PDF
    Titanium dioxide nanoparticles (TiO2 NP) are possible carcinogenic materials (2B-IARC) and their toxicity depends on shape, size, and electrical charge of primary NP and on the system formed by NP media. The aim of this work was to characterize agglomerates of three TiO2 NP by evaluating their morphometry, stability, and zeta potential (ζ) in liquid media and their changes with time. Sizes of agglomerates by dynamic light scattering (DLS) resulted to be 10–50 times larger than those obtained by digital image analysis (DIA) given the charged zone around particles. Fractal dimension (FD) was highest for agglomerates of spheres and belts in F12K, and in E171 in FBS media. E171 and belts increased FD with time. At time zero, using water as dispersant FD was larger for agglomerates of spheres than for of E171. Belts suspended in water had the smallest values of circularity (Ci) which was approximately unchanged with time. All dispersions had ζ values around −30 mV at physiological pH (7.4) and dispersions of NP in water and FBS showed maximum stability (Turbiscan Lab analysis). Results help in understanding the complex NP geometry-size-stability relationships when performing in vivo and in vitro environmental-toxicity works and help in supporting decisions on the usage of TiO2 NP

    Integrative methylome-transcriptome analysis unravels cancer cell vulnerabilities in infant MLL-rearranged B cell acute lymphoblastic leukemia

    Get PDF
    B cell acute lymphoblastic leukemia (B-ALL) is the most common childhood cancer. As predicted by its prenatal origin, infant B-ALL (iB-ALL) shows an exceptionally silent DNA mutational landscape, suggesting that alternative epigenetic mechanisms may substantially contribute to its leukemogenesis. Here, we have integrated genome-wide DNA methylome and transcriptome data from 69 patients with de novo MLL-rearranged leukemia (MLLr) and non-MLLr iB-ALL leukemia uniformly treated according to the Interfant-99/06 protocol. iB-ALL methylome signatures display a plethora of common and specific alterations associated with chromatin states related to enhancer and transcriptional control in normal hematopoietic cells. DNA methylation, gene expression, and gene coexpression network analyses segregated MLLr away from non-MLLr iB-ALL and identified a coordinated and enriched expression of the AP-1 complex members FOS and JUN and RUNX factors in MLLr iB-ALL, consistent with the significant enrichment of hypomethylated CpGs in these genes. Integrative methylome-transcriptome analysis identified consistent cancer cell vulnerabilities, revealed a robust iB-ALL–specific gene expression–correlating dmCpG signature, and confirmed an epigenetic control of AP-1 and RUNX members in reshaping the molecular network of MLLr iB-ALL. Finally, pharmacological inhibition or functional ablation of AP-1 dramatically impaired MLLr-leukemic growth in vitro and in vivo using MLLr-iB-ALL patient–derived xenografts, providing rationale for new therapeutic avenues in MLLr-iB-ALL.We thank CERCA/Generalitat de Catalunya (SGR180) and Fundació Josep Carreras-Obra Social la Caixa for their institutional support. Financial support for this work was obtained from the European Research Council (CoG-2014-646903 and PoC-2018-811220 to PM), the Spanish Ministry of Economy and Competitiveness (SAF-2019-108160-R and SAF2016-76758-R to PM and IV, respectively), the Spanish Association against cancer (AECC-CI-2015 and PROYE18061FERN to CB and MFF), the Fundación Uno entre Cienmil (to PM), the Health Institute Carlos III (ISCIII/FEDER, PI17/01028, PI15/00892, PI18/01527 to CB and AFF/MFF, respectively). We also acknowledge the Plan de Ciencia, Tecnología e Innovación from the Asturias Government cofunding 2018–2022/FEDER (IDI/2018/146to MFF). MFF also acknowledges funding from Fundación General CSIC (0348_CIE_6_E). PM also acknowledges financial support from Fundación Leo Messi. JRT and MV are supported by Juan de la Cierva fellowships by the Spanish Ministry of Science and Innovation (FJCI-2015-26965, IJC2018-36825-I, IJCI-2017-3317) and IUOPA-ISPA-FINBA (The IUOPA is supported by the Obra Social Cajastur-Liberbank, Spain). RTR is supported by a fellowship from the AECC scientific foundation. RFP and PSO are supported by the Severo Ochoa program (BP17-114 and BP17-165, respectively).Peer reviewe

    The state of the Martian climate

    Get PDF
    60°N was +2.0°C, relative to the 1981–2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes

    Clonal chromosomal mosaicism and loss of chromosome Y in elderly men increase vulnerability for SARS-CoV-2

    Full text link
    The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, COVID-19) had an estimated overall case fatality ratio of 1.38% (pre-vaccination), being 53% higher in males and increasing exponentially with age. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, we found 133 cases (1.42%) with detectable clonal mosaicism for chromosome alterations (mCA) and 226 males (5.08%) with acquired loss of chromosome Y (LOY). Individuals with clonal mosaic events (mCA and/or LOY) showed a 54% increase in the risk of COVID-19 lethality. LOY is associated with transcriptomic biomarkers of immune dysfunction, pro-coagulation activity and cardiovascular risk. Interferon-induced genes involved in the initial immune response to SARS-CoV-2 are also down-regulated in LOY. Thus, mCA and LOY underlie at least part of the sex-biased severity and mortality of COVID-19 in aging patients. Given its potential therapeutic and prognostic relevance, evaluation of clonal mosaicism should be implemented as biomarker of COVID-19 severity in elderly people. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, individuals with clonal mosaic events (clonal mosaicism for chromosome alterations and/or loss of chromosome Y) showed an increased risk of COVID-19 lethality

    State of the climate in 2018

    Get PDF
    In 2018, the dominant greenhouse gases released into Earth’s atmosphere—carbon dioxide, methane, and nitrous oxide—continued their increase. The annual global average carbon dioxide concentration at Earth’s surface was 407.4 ± 0.1 ppm, the highest in the modern instrumental record and in ice core records dating back 800 000 years. Combined, greenhouse gases and several halogenated gases contribute just over 3 W m−2 to radiative forcing and represent a nearly 43% increase since 1990. Carbon dioxide is responsible for about 65% of this radiative forcing. With a weak La Niña in early 2018 transitioning to a weak El Niño by the year’s end, the global surface (land and ocean) temperature was the fourth highest on record, with only 2015 through 2017 being warmer. Several European countries reported record high annual temperatures. There were also more high, and fewer low, temperature extremes than in nearly all of the 68-year extremes record. Madagascar recorded a record daily temperature of 40.5°C in Morondava in March, while South Korea set its record high of 41.0°C in August in Hongcheon. Nawabshah, Pakistan, recorded its highest temperature of 50.2°C, which may be a new daily world record for April. Globally, the annual lower troposphere temperature was third to seventh highest, depending on the dataset analyzed. The lower stratospheric temperature was approximately fifth lowest. The 2018 Arctic land surface temperature was 1.2°C above the 1981–2010 average, tying for third highest in the 118-year record, following 2016 and 2017. June’s Arctic snow cover extent was almost half of what it was 35 years ago. Across Greenland, however, regional summer temperatures were generally below or near average. Additionally, a satellite survey of 47 glaciers in Greenland indicated a net increase in area for the first time since records began in 1999. Increasing permafrost temperatures were reported at most observation sites in the Arctic, with the overall increase of 0.1°–0.2°C between 2017 and 2018 being comparable to the highest rate of warming ever observed in the region. On 17 March, Arctic sea ice extent marked the second smallest annual maximum in the 38-year record, larger than only 2017. The minimum extent in 2018 was reached on 19 September and again on 23 September, tying 2008 and 2010 for the sixth lowest extent on record. The 23 September date tied 1997 as the latest sea ice minimum date on record. First-year ice now dominates the ice cover, comprising 77% of the March 2018 ice pack compared to 55% during the 1980s. Because thinner, younger ice is more vulnerable to melting out in summer, this shift in sea ice age has contributed to the decreasing trend in minimum ice extent. Regionally, Bering Sea ice extent was at record lows for almost the entire 2017/18 ice season. For the Antarctic continent as a whole, 2018 was warmer than average. On the highest points of the Antarctic Plateau, the automatic weather station Relay (74°S) broke or tied six monthly temperature records throughout the year, with August breaking its record by nearly 8°C. However, cool conditions in the western Bellingshausen Sea and Amundsen Sea sector contributed to a low melt season overall for 2017/18. High SSTs contributed to low summer sea ice extent in the Ross and Weddell Seas in 2018, underpinning the second lowest Antarctic summer minimum sea ice extent on record. Despite conducive conditions for its formation, the ozone hole at its maximum extent in September was near the 2000–18 mean, likely due to an ongoing slow decline in stratospheric chlorine monoxide concentration. Across the oceans, globally averaged SST decreased slightly since the record El Niño year of 2016 but was still far above the climatological mean. On average, SST is increasing at a rate of 0.10° ± 0.01°C decade−1 since 1950. The warming appeared largest in the tropical Indian Ocean and smallest in the North Pacific. The deeper ocean continues to warm year after year. For the seventh consecutive year, global annual mean sea level became the highest in the 26-year record, rising to 81 mm above the 1993 average. As anticipated in a warming climate, the hydrological cycle over the ocean is accelerating: dry regions are becoming drier and wet regions rainier. Closer to the equator, 95 named tropical storms were observed during 2018, well above the 1981–2010 average of 82. Eleven tropical cyclones reached Saffir–Simpson scale Category 5 intensity. North Atlantic Major Hurricane Michael’s landfall intensity of 140 kt was the fourth strongest for any continental U.S. hurricane landfall in the 168-year record. Michael caused more than 30 fatalities and 25billion(U.S.dollars)indamages.InthewesternNorthPacific,SuperTyphoonMangkhutledto160fatalitiesand25 billion (U.S. dollars) in damages. In the western North Pacific, Super Typhoon Mangkhut led to 160 fatalities and 6 billion (U.S. dollars) in damages across the Philippines, Hong Kong, Macau, mainland China, Guam, and the Northern Mariana Islands. Tropical Storm Son-Tinh was responsible for 170 fatalities in Vietnam and Laos. Nearly all the islands of Micronesia experienced at least moderate impacts from various tropical cyclones. Across land, many areas around the globe received copious precipitation, notable at different time scales. Rodrigues and Réunion Island near southern Africa each reported their third wettest year on record. In Hawaii, 1262 mm precipitation at Waipā Gardens (Kauai) on 14–15 April set a new U.S. record for 24-h precipitation. In Brazil, the city of Belo Horizonte received nearly 75 mm of rain in just 20 minutes, nearly half its monthly average. Globally, fire activity during 2018 was the lowest since the start of the record in 1997, with a combined burned area of about 500 million hectares. This reinforced the long-term downward trend in fire emissions driven by changes in land use in frequently burning savannas. However, wildfires burned 3.5 million hectares across the United States, well above the 2000–10 average of 2.7 million hectares. Combined, U.S. wildfire damages for the 2017 and 2018 wildfire seasons exceeded $40 billion (U.S. dollars)

    Correlación entre actividad PME, parámetros viscoelásticos y estructurales para tejido comestible de Carica papaya a lo largo de la maduración

    No full text
    9 páginasPapaya fruit, widely consumed around the world, is mechanically and structurally affected by several enzymatic processes during ripening, where pectin methylesterase plays a key role. Hence, the aim of this work was to evaluate possible correlations among physicochemical changes, mechanical parameters, viscoelastic behavior, and enzyme activity of pectin methylesterase to provide information about the softening phenomenon by applying the Maxwell and Peleg models. Mechanical parameters were estimated by texture profile analysis, enzyme activity by Michaelis–Menten parameters, and viscoelastic behavior by relaxation test responses fitted to these models. The Maxwell model described properly mechanical changes during ripening, displaying a better adjustment (R2 > 0.97) than the Peleg model (0.80 < R2 < 0.84). Pearson correlation analysis (P ≤ 0.01) indicated an inversely proportional relation among firmness, total soluble solids, and the first elastic element of the Maxwell model. Besides, the PME Michaelis–Menten affinity constant showed a correlation between the first elastic element and the first viscoelastic element of the Maxwell model. Findings of this work pointed out that the first Maxwell elastic element could explain structural changes as papaya ripening advance, associated with pectin methylesterase activity, cell wall disruption, and cell assembling into the tissue

    Evaluation of the mechanical damage on wheat starch granules by SEM, ESEM, AFM and texture image analysis

    Get PDF
    The effect of mechanical damage on wheat starch granules surface, at a microstructural level, was investigated by scanning electron microscopy (SEM), environmental scanning electron microscopy (ESEM), atomic force microscopy (AFM), and image textural analysis. The SEM and ESEM images of the native sample showed that the starch granules had smooth, flat surfaces and smooth edges. The samples with higher damaged starch content exhibited granular distortion, irregularity and less uniformity. The fractal dimension of contour parameter increased with mechanical damage, indicating thatthe surface irregularities quantitatively increased due to the damage. The surfaces of damaged granules showed depressions of different shapes and sizes. The roughness parameters and fractal dimension of the surface increased as a result of the mechanical damage. The surface of damaged granules showed higher entropy and lower homogeneity values when damaged starch increased. The results indicated that the mechanical process caused structural modifications at nano level.Fil: Barrera, Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Ciencia y Tecnología de Alimentos Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Ciencia y Tecnología de Alimentos Córdoba; ArgentinaFil: Calderón Domínguez, Georgina. Instituto Politécnico Nacional. Escuela Nacional de Ciencias Biológicas; MéxicoFil: Chanona Pérez, Jorge. Instituto Politécnico Nacional. Escuela Nacional de Ciencias Biológicas; MéxicoFil: Gutiérrez López, Gustavo F.. Instituto Politécnico Nacional. Escuela Nacional de Ciencias Biológicas; MéxicoFil: Leon, Alberto Edel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Ciencia y Tecnología de Alimentos Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Ciencia y Tecnología de Alimentos Córdoba; ArgentinaFil: Ribotta, Pablo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Ciencia y Tecnología de Alimentos Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Ciencia y Tecnología de Alimentos Córdoba; Argentina. Universidad Nacional de Córdoba. Secretaría de Ciencia y Tecnología. Instituto Superior de Investigación, Desarrollo y Servicio de Alimentos; Argentin

    Parámetros de calidad y caracterización morfométrica de palomitas de maíz de aire caliente en relación con el contenido de humedad

    No full text
    12 páginasUpon popping, corn kernels undergo substantial dehydration. Initial moisture content of the kernel, popping method and temperature determine the final quality, and physical characteristics of the flakes. In this work, corn kernels (Zea Mays var Everta) at different moisture contents were subjected to hot-air popping and quality, physical and morphometric parameters of the flakes were evaluated, and related with their microstructural features. The best moisture content for hot-air popping was 9.14%. Macro and microstructural examination and digital image analysis of the flakes showed that, at the macro level, the roughness of the different flakes, as given by their fractal dimension (FD), were similar among morphologies, whereas at the microscale, it was possible to differentiate between them. Additionally, at the macro-scale, for the different morphologies high correlations were found between areas and the linear dimensions (Feret or width)FD of evaluated flakes. Moreover, when using the FD of the microstructures as the exponent, high correlations were also observed, which confirms an analog multiscale behavior between the roughness of the flakes and their microstructures.Al reventar, los granos de maíz se deshidratan sustancialmente. El contenido de humedad inicial del grano, el método de estallido y la temperatura determinan la calidad final y las características físicas de las hojuelas. En este trabajo, granos de maíz (Zea Mays var Everta) con diferentes contenidos de humedad fueron sometidos a soplado con aire caliente y se evaluaron parámetros físicos, morfométricos y de calidad de las hojuelas, y se relacionaron con sus características microestructurales. El mejor contenido de humedad para hacer estallar con aire caliente fue 9.14%. El examen macro y microestructural y el análisis de imágenes digitales de las lascas mostraron que, a nivel macro, la rugosidad de las diferentes lascas, dada por su dimensión fractal (FD), era similar entre morfologías, mientras que a microescala era posible diferenciar entre ellos. Además, a macroescala, para las diferentes morfologías se encontraron altas correlaciones entre las áreas y las dimensiones lineales (Feret o ancho)FD de las lascas evaluadas. Además, al utilizar la FD de las microestructuras como exponente, también se observaron altas correlaciones, lo que confirma un comportamiento multiescala analógico entre la rugosidad de las lascas y sus microestructuras
    corecore