60 research outputs found

    Sex, body size, and boldness shape the seasonal foraging habitat selection in southern elephant seals

    Get PDF
    Selecting foraging habitat is a fundamental behavior in the life of organisms as it directly links resource acquisition to fitness. Differences in habitat selection among individuals may arise from several intrinsic and extrinsic factors, and yet, their interaction has been given little attention in the study of wild populations. We combine sex, body size, and boldness to explain individual differences in the seasonal foraging habitat selection of southern elephant seals (Mirounga leonina) from the Kerguelen Archipelago. We hypothesize that habitat selection is linked to the trade‐off between resource acquisition and risk, and that individuals differ in their position along this trade‐off because of differences in reproductive strategies, life stages, and metabolic requirements. Before the post‐molt foraging trip, we used a novel object approach test to quantify the boldness of 28 subadult and adult females and 42 subadult males and equipped them with data loggers to track their movements at sea. Subadult males selected neritic and oceanic habitats, whereas females mostly selected less productive oceanic habitats. Both sexes showed a seasonal shift from Antarctic habitats in the south in the summer to the free of ice subantarctic and subtropical habitats in the north in the winter. Males avoided oceanic habitats and selected more productive neritic and Antarctic habitats with body size mostly in the winter. Bolder males selected northern warmer waters in winter, while shyer ones selected the Kerguelen plateau and southern colder oceanic waters. Bolder females selected the Kerguelen plateau in the summer when prey profitability is assumed to be the highest. This study not only provides new insights into the spatiotemporal foraging ecology of elephant seals in relation to personality but also emphasizes the relevance of combining several intrinsic and extrinsic factors in understanding among‐individual variation in space use essential in wildlife management and conservation

    Quantum cascade laser frequency stabilisation at the sub-Hz level

    Full text link
    Quantum Cascade Lasers (QCL) are increasingly being used to probe the mid-infrared "molecular fingerprint" region. This prompted efforts towards improving their spectral performance, in order to reach ever-higher resolution and precision. Here, we report the stabilisation of a QCL onto an optical frequency comb. We demonstrate a relative stability and accuracy of 2x10-15 and 10-14, respectively. The comb is stabilised to a remote near-infrared ultra-stable laser referenced to frequency primary standards, whose signal is transferred via an optical fibre link. The stability and frequency traceability of our QCL exceed those demonstrated so far by two orders of magnitude. As a demonstration of its capability, we then use it to perform high-resolution molecular spectroscopy. We measure absorption frequencies with an 8x10-13 relative uncertainty. This confirms the potential of this setup for ultra-high precision measurements with molecules, such as our ongoing effort towards testing the parity symmetry by probing chiral species

    Long-term species, sexual and individual variations in foraging strategies of fur seals revealed by stable isotopes in whiskers

    Get PDF
    Background: Individual variations in the use of the species niche are an important component of diversity in trophic interactions. A challenge in testing consistency of individual foraging strategy is the repeated collection of information on the same individuals. Methodology/Principal Findings: The foraging strategies of sympatric fur seals (Arctocephalus gazella and A. tropicalis) were examined using the stable isotope signature of serially sampled whiskers. Most whiskers exhibited synchronous delta C-13 and delta N-15 oscillations that correspond to the seal annual movements over the long term (up to 8 years). delta C-13 and delta N-15 values were spread over large ranges, with differences between species, sexes and individuals. The main segregating mechanism operates at the spatial scale. Most seals favored foraging in subantarctic waters (where the Crozet Islands are located) where they fed on myctophids. However, A. gazella dispersed in the Antarctic Zone and A. tropicalis more in the subtropics. Gender differences in annual time budget shape the seal movements. Males that do not perform any parental care exhibited large isotopic oscillations reflecting broad annual migrations, while isotopic values of females confined to a limited foraging range during lactation exhibited smaller changes. Limited inter-individual isotopic variations occurred in female seals and in male A. tropicalis. In contrast, male A. gazella showed large inter-individual variations, with some males migrating repeatedly to high-Antarctic waters where they fed on krill, thus meaning that individual specialization occurred over years. Conclusions/Significance: Whisker isotopic signature yields unique long-term information on individual behaviour that integrates the spatial, trophic and temporal dimensions of the ecological niche. The method allows depicting the entire realized niche of the species, including some of its less well-known components such as age-, sex-, individual- and migration-related changes. It highlights intrapopulation heterogeneity in foraging strategies that could have important implications for likely demographic responses to environmental variability

    Convergence of marine megafauna movement patterns in coastal and open oceans

    Get PDF
    Author Posting. © The Author(s), 2017. This is the author's version of the work. It is posted here for personal use, not for redistribution. The definitive version was published in Proceedings of the National Academy of Sciences of the United States of America 115 (2018): 3072-3077, doi:10.1073/pnas.1716137115.The extent of increasing anthropogenic impacts on large marine vertebrates partly depends on the animals’ movement patterns. Effective conservation requires identification of the key drivers of movement including intrinsic properties and extrinsic constraints associated with the dynamic nature of the environments the animals inhabit. However, the relative importance of intrinsic versus extrinsic factors remains elusive. We analyse a global dataset of 2.8 million locations from > 2,600 tracked individuals across 50 marine vertebrates evolutionarily separated by millions of years and using different locomotion modes (fly, swim, walk/paddle). Strikingly, movement patterns show a remarkable convergence, being strongly conserved across species and independent of body length and mass, despite these traits ranging over 10 orders of magnitude among the species studied. This represents a fundamental difference between marine and terrestrial vertebrates not previously identified, likely linked to the reduced costs of locomotion in water. Movement patterns were primarily explained by the interaction between species-specific traits and the habitat(s) they move through, resulting in complex movement patterns when moving close to coasts compared to more predictable patterns when moving in open oceans. This distinct difference may be associated with greater complexity within coastal micro-habitats, highlighting a critical role of preferred habitat in shaping marine vertebrate global movements. Efforts to develop understanding of the characteristics of vertebrate movement should consider the habitat(s) through which they move to identify how movement patterns will alter with forecasted severe ocean changes, such as reduced Arctic sea ice cover, sea level rise and declining oxygen content.Workshops funding granted by the UWA Oceans Institute, AIMS, and KAUST. AMMS was supported by an ARC Grant DE170100841 and an IOMRC (UWA, AIMS, CSIRO) fellowship; JPR by MEDC (FPU program, Spain); DWS by UK NERC and Save Our Seas Foundation; NQ by FCT (Portugal); MMCM by a CAPES fellowship (Ministry of Education)

    Foraging Fidelity as a Recipe for a Long Life: Foraging Strategy and Longevity in Male Southern Elephant Seals

    Get PDF
    Identifying individual factors affecting life-span has long been of interest for biologists and demographers: how do some individuals manage to dodge the forces of mortality when the vast majority does not? Answering this question is not straightforward, partly because of the arduous task of accurately estimating longevity in wild animals, and of the statistical difficulties in correlating time-varying ecological covariables with a single number (time-to-event). Here we investigated the relationship between foraging strategy and life-span in an elusive and large marine predator: the Southern Elephant Seal (Mirounga leonina). Using teeth recovered from dead males on îles Kerguelen, Southern Ocean, we first aged specimens. Then we used stable isotopic measurements of carbon () in dentin to study the effect of foraging location on individual life-span. Using a joint change-point/survival modelling approach which enabled us to describe the ontogenetic trajectory of foraging, we unveiled how a stable foraging strategy developed early in life positively covaried with longevity in male Southern Elephant Seals. Coupled with an appropriate statistical analysis, stable isotopes have the potential to tackle ecological questions of long standing interest but whose answer has been hampered by logistic constraints

    The retrospective analysis of Antarctic tracking data project

    Get PDF
    The Retrospective Analysis of Antarctic Tracking Data (RAATD) is a Scientific Committee for Antarctic Research project led jointly by the Expert Groups on Birds and Marine Mammals and Antarctic Biodiversity Informatics, and endorsed by the Commission for the Conservation of Antarctic Marine Living Resources. RAATD consolidated tracking data for multiple species of Antarctic meso- and top-predators to identify Areas of Ecological Significance. These datasets and accompanying syntheses provide a greater understanding of fundamental ecosystem processes in the Southern Ocean, support modelling of predator distributions under future climate scenarios and create inputs that can be incorporated into decision making processes by management authorities. In this data paper, we present the compiled tracking data from research groups that have worked in the Antarctic since the 1990s. The data are publicly available through biodiversity.aq and the Ocean Biogeographic Information System. The archive includes tracking data from over 70 contributors across 12 national Antarctic programs, and includes data from 17 predator species, 4060 individual animals, and over 2.9 million observed locations

    Animal-borne telemetry: An integral component of the ocean observing toolkit

    Get PDF
    Animal telemetry is a powerful tool for observing marine animals and the physical environments that they inhabit, from coastal and continental shelf ecosystems to polar seas and open oceans. Satellite-linked biologgers and networks of acoustic receivers allow animals to be reliably monitored over scales of tens of meters to thousands of kilometers, giving insight into their habitat use, home range size, the phenology of migratory patterns and the biotic and abiotic factors that drive their distributions. Furthermore, physical environmental variables can be collected using animals as autonomous sampling platforms, increasing spatial and temporal coverage of global oceanographic observation systems. The use of animal telemetry, therefore, has the capacity to provide measures from a suite of essential ocean variables (EOVs) for improved monitoring of Earth's oceans. Here we outline the design features of animal telemetry systems, describe current applications and their benefits and challenges, and discuss future directions. We describe new analytical techniques that improve our ability to not only quantify animal movements but to also provide a powerful framework for comparative studies across taxa. We discuss the application of animal telemetry and its capacity to collect biotic and abiotic data, how the data collected can be incorporated into ocean observing systems, and the role these data can play in improved ocean management

    Distribution and Cconnection to other Plant-Communities of Genista radiata (L.) Scop in the South Tyrol (Italy)

    Get PDF
    Es werden die Genista radiata-Bestände an der Mendel in Südtirol (Italien) beschrieben und ihr Gesellschaftsanschluß diskutiert. Das Genisto-Festucetum alpestris Peer 83 besidelt steile südexponierte Kalkhänge der hochmontanen und subalpinen Stufe und ersetzt z.T. den Zwergstrauchgürtel mit Pinus mugo. Ähnlich zusammengesetzt ist das Genisto-Festucetum alpestris pinetosum Peer 83, das in den ¡lockeren Erika-Kiefernwäldern auftritt und bis in die tiefmontane Stufe hinunterreicht. Keinerlei syntaxonomische Bedeutung besitzt Genista radiata in den thermophilen Buschwaldgesellschaften, in denen die Pflanze lediglich eine Variante zum Orno-Ostryetum seslerietosum Peer 81 darstellt und speziell in der Saumzone anzutreffen ist. Auch in den Lärchenwiesen der Kammlagen kommt Genista radiata nur sporadisch vor. Sie ist hier mit dem Festucetum nigrescentis laricetosum subass. prov. verzahnt.Istražene su vegetacijske sastojine vrste Genista radiata u južnom Tirolu i razmatrana njihova fitocenološka pripadnost. Asocijacija Genisto-Festucetum alpestris Peer 83 nastava strme, južne vapnenačke obronke visokobrdskog i subalpskog pojasa. Subasocijacija Genisto-Festucetum alpestris pinetosum Peer 83 dolazi u rijetkim borovim šumama s crnjušom i spušta se do u niži brdski pojas. Termofilne niske šume, u kojima Genista radiata nema posebno sintaksonomsko značenje, označene su samo kao varijanta zajednice Orno-Ostryetum seslerietosum Peer 81. Genista radiata dolazi također na travnjacima s arišem, ali samo sporadično i to u mješavini sa zajednicom Festucetum nigrescentis laricetosnm subass. prov.The Genista radiata-communities of the Mendel in the South Tyrol (Italy) are described and their connection to other plant-communities is discussed. Genisto-Festucetum alpestris Peer 83 settles on steep, south- exposed colcareous slopes of high-mountain and subalpine altitudes and replaces particularly the dwarf-shrub-belt with Firms mugo. Similar contents aire found in Genisto-F estucetum alpestris pinetasum Peer 83, which occurs in undensed Erico-Pinetum-communities and reaches down to the low-mountain-altitude. In the thermophilic bush-communities, in which Genista radiata is found only as a variant of Orneto-Ostryetum seslerie- tosum (Peer 81), the plant has no syntaxonomic importance. Genista radiata especially is found in the edge-zone. In the grassland of the larch- communities of the ridges Genista radiata appears only sporadically. Here the plant appeals in Festucetum nigrescentis laricetosum subass. prov

    The retrospective analysis of Antarctic tracking data project

    Get PDF
    The Retrospective Analysis of Antarctic Tracking Data (RAATD) is a Scientific Committee for Antarctic Research project led jointly by the Expert Groups on Birds and Marine Mammals and Antarctic Biodiversity Informatics, and endorsed by the Commission for the Conservation of Antarctic Marine Living Resources. RAATD consolidated tracking data for multiple species of Antarctic meso- and top-predators to identify Areas of Ecological Significance. These datasets and accompanying syntheses provide a greater understanding of fundamental ecosystem processes in the Southern Ocean, support modelling of predator distributions under future climate scenarios and create inputs that can be incorporated into decision making processes by management authorities. In this data paper, we present the compiled tracking data from research groups that have worked in the Antarctic since the 1990s. The data are publicly available through biodiversity.aq and the Ocean Biogeographic Information System. The archive includes tracking data from over 70 contributors across 12 national Antarctic programs, and includes data from 17 predator species, 4060 individual animals, and over 2.9 million observed locations.Supplementary Figure S1: Filtered location data (black) and tag deployment locations (red) for each species. Maps are Lambert Azimuthal projections extending from 90° S to 20° S.Supplementary Table S1: Names and coordinates of the major study sites in the Southern Ocean and on the Antarctic Continent where tracking devices were deployed on the selected species (indicated by their 4-letter codes in the last column).Online Table 1: Description of fields (column names) in the metadata and data files.Supranational committees and organisations including the Scientific Committee on Antarctic Research Life Science Group and BirdLife International. National institutions and foundations, including but not limited to Argentina (Dirección Nacional del Antártico), Australia (Australian Antarctic program; Australian Research Council; Sea World Research and Rescue Foundation Inc., IMOS is a national collaborative research infrastructure, supported by the Australian Government and operated by a consortium of institutions as an unincorporated joint venture, with the University of Tasmania as Lead Agent), Belgium (Belgian Science Policy Office, EU Lifewatch ERIC), Brazil (Brazilian Antarctic Programme; Brazilian National Research Council (CNPq/MCTI) and CAPES), France (Agence Nationale de la Recherche; Centre National d’Etudes Spatiales; Centre National de la Recherche Scientifique; the French Foundation for Research on Biodiversity (FRB; www.fondationbiodiversite.fr) in the context of the CESAB project “RAATD”; Fondation Total; Institut Paul-Emile Victor; Programme Zone Atelier de Recherches sur l’Environnement Antarctique et Subantarctique; Terres Australes et Antarctiques Françaises), Germany (Deutsche Forschungsgemeinschaft, Hanse-Wissenschaftskolleg - Institute for Advanced Study), Italy (Italian National Antarctic Research Program; Ministry for Education University and Research), Japan (Japanese Antarctic Research Expedition; JSPS Kakenhi grant), Monaco (Fondation Prince Albert II de Monaco), New Zealand (Ministry for Primary Industries - BRAG; Pew Charitable Trusts), Norway (Norwegian Antarctic Research Expeditions; Norwegian Research Council), Portugal (Foundation for Science and Technology), South Africa (Department of Environmental Affairs; National Research Foundation; South African National Antarctic Programme), UK (Darwin Plus; Ecosystems Programme at the British Antarctic Survey; Natural Environment Research Council; WWF), and USA (U.S. AMLR Program of NOAA Fisheries; US Office of Polar Programs).http://www.nature.com/sdataam2021Mammal Research Institut

    Foraging ecology of Mediterranean fin whales in a changing environment elucidated by satellite tracking and baleen plate stable isotopes

    No full text
    International audienceWe investigated seasonal shifts in diet and distribution of fin whales Bala en optera physalus occurring in the western Mediterranean Sea. For this purpose, we combined carbon and nitrogen stable isotope ratios (δ13C, δ15N) along 10 baleen plates collected from stranded fin whales between 1975 and 2002 with satellite tag deployments on 11 fin whales during summer 2003. Baleen plate stable isotopes were compared with those of the krill Meganyctiphanes norvegica, the main prey of fin whales in the northwestern Mediterranean Sea. Two plates collected near Malaga, Spain, exhibited larger δ13C variations, while only smaller variations could be detected in the other 8. While all mean baleen plate results were consistent with the δ13C signature of Mediterranean M. norvegica, the most depleted δ13C values were intermediate between those of Atlantic and Mediterranean M. norvegica, suggesting westward migrations perhaps extending to the Strait of Gibraltar but not extensive, prolonged feeding in the Northeast Atlantic. This pattern was confirmed by satellite tracking; 1 out of 8 fin whales we successfully tracked left the Mediterranean for the Atlantic. Longer-term changes in isotopic signatures of baleen plates exhibited significant depletion trends, indicating that changes due to increasing input of nutrients and anthropogenic carbon are occurring in the western Mediterranean Sea ecosystem
    corecore