13 research outputs found

    Privileged Communications with Accountants: The Demise of United States v. Kovel

    No full text

    Getting out of crises: Environmental, social-ecological and evolutionary research is needed to avoid future risks of pandemics

    Get PDF
    The implementation of One Health/EcoHealth/Planetary Health approaches has been identified as key (i) to address the strong interconnections between risk for pandemics, climate change and biodiversity loss and (ii) to develop and implement solutions to these interlinked crises. As a response to the multiple calls from scientists on that subject, we have here proposed seven long-term research questions regarding COVID-19 and emerging infectious diseases (EIDs) that are based on effective integration of environmental, ecological, evolutionary, and social sciences to better anticipate and mitigate EIDs. Research needs cover the social ecology of infectious disease agents, their evolution, the determinants of susceptibility of humans and animals to infections, and the human and ecological factors accelerating infectious disease emergence. For comprehensive investigation, they include the development of nature-based solutions to interlinked global planetary crises, addressing ethical and philosophical questions regarding the relationship of humans to nature and regarding transformative changes to safeguard the environment and human health. In support of this research, we propose the implementation of innovative multidisciplinary facilities embedded in social ecosystems locally: ecological health observatories and living laboratories. This work was carried out in the frame of the European Community project HERA (www.HERAresearchEU.eu), which aims to set priorities for an environment, climate and health research agenda in the European Union by adopting a systemic approach in the face of global environmental change

    Getting out of crises: Environmental, social-ecological and evolutionary research is needed to avoid future risks of pandemics

    Get PDF
    The implementation of One Health/EcoHealth/Planetary Health approaches has been identified as key (i) to address the strong interconnections between risk for pandemics, climate change and biodiversity loss and (ii) to develop and implement solutions to these interlinked crises. As a response to the multiple calls from scientists on that subject, we have here proposed seven long-term research questions regarding COVID-19 and emerging infectious diseases (EIDs) that are based on effective integration of environmental, ecological, evolutionary, and social sciences to better anticipate and mitigate EIDs. Research needs cover the social ecology of infectious disease agents, their evolution, the determinants of susceptibility of humans and animals to infections, and the human and ecological factors accelerating infectious disease emergence. For comprehensive investigation, they include the development of nature-based solutions to interlinked global planetary crises, addressing ethical and philosophical questions regarding the relationship of humans to nature and regarding transformative changes to safeguard the environment and human health. In support of this research, we propose the implementation of innovative multidisciplinary facilities embedded in social ecosystems locally: ecological health observatories and living laboratories. This work was carried out in the frame of the European Community project HERA (www.HERAresearchEU.eu), which aims to set priorities for an environment, climate and health research agenda in the European Union by adopting a systemic approach in the face of global environmental change

    Stereochemical effects in mass spectrometry

    No full text

    Efficient Lewis Acid Promoted Alkene Hydrogenations Using Dinitrosyl Rhenium(−I) Hydride Catalysts

    Full text link
    Highly efficient alkene hydrogenations were developed using NO-functionalized hydrido dinitrosyl rhenium catalysts of the type [ReH(PR3)2(NO)(NO(LA))][Z] (2, LA = B(C6F5)3; 3, LA = [Et]+, Z = [B(C6F5)4]−; 4, LA = [SiEt3]+, Z = [HB(C6F5)3]−; R = iPr a, Cy b). Lewis acid attachment to the NO ligand was found to facilitate bending at the NOLA atom and concomitantly to open up a vacant site at the rhenium center. According to DFT calculations, the ability to bend follows the order 4 > 3 > 2, which did not match with the order of increasing hydrogenation activities: 3 > 4 > 2. The main factor spoiling catalytic performance was catalyst deactivation by detachment of the LA group occurring during the catalytic reaction course, which was found to go along with the decrease in order of DFT-calculated strengths of the ONO–LA bonds. LA detachment from the ONO atom could at least partly be prevented by LA addition as cocatalysts, which led to an extraordinary boost of the hydrogenation activities. For instance the “1/hydrosilane/B(C6F5)3” (1:5:5) system exhibited the highest performance, with TOFs up to 1.2 × 105 h–1 (1-hexene, 1-octene, cyclooctene, cyclohexene). The cocatalyst [Et3O][B(C6F5)4] showed the smallest effect, presumably due to the strong Lewis acidic character of the reagent causing side-reactions before reacting with 1a,b. The catalytic reaction course crucially involves not only reversible bending at the NOLA atom but also loss of a PR3 ligand, forming 16e or 14e monohydride reactive intermediates, which drive an Osborn-type hydrogenation cycle with olefin before H2 addition
    corecore