10 research outputs found

    Identification of peptidases in Nicotiana tabacum leaf intercellular fluid.

    No full text
    Peptidases in the extracellular space might affect the integrity of recombinant proteins expressed in, and secreted from, plant cells. To identify extracellular peptidases, we recovered the leaf intercellular fluid from Nicotiana tabacum plants by an infiltration-centrifugation method. The activity of various peptidases was detected by an in vitro assay in the presence of specific inhibitors, using BSA and human serum gamma-globulin as substrates. Peptidases were detected by 1- and 2-D zymography in a polyacrylamide gel containing gelatin as substrate. Proteolytic activity was observed over a wide range of molecular masses equal to, or higher than, 45 kDa. To identify the peptidases, the extracellular proteins were digested with trypsin and analyzed by LC and MS. Seventeen peptides showing identity or similarity to predicted plant aspartic, cysteine, and serine peptidases have been identified. The extracellular localization of a cysteine peptidase aleurain homolog was also shown

    The genome of black cottonwood, Populus trichocarpa (Torr. & Gray)

    Get PDF
    We report the draft genome of the black cottonwood tree, Populus trichocarpa. Integration of shotgun sequence assembly with genetic mapping enabled chromosome-scale reconstruction of the genome. More than 45,000 putative protein-coding genes were identified. Analysis of the assembled genome revealed a whole-genome duplication event; about 8000 pairs of duplicated genes from that event survived in the Populus genome. A second, older duplication event is indistinguishably coincident with the divergence of the Populus and Arabidopsis lineages. Nucleotide substitution, tandem gene duplication, and gross chromosomal rearrangement appear to proceed substantially more slowly in Populus than in Arabidopsis. Populus has more protein-coding genes than Arabidopsis, ranging on average from 1.4 to 1.6 putative Populus homologs for each Arabidopsis gene. However, the relative frequency of protein domains in the two genomes is similar. Overrepresented exceptions in Populus include genes associated with lignocellulosic wall biosynthesis, meristem development, disease resistance, and metabolite transport

    The genome of black cottonwood, Populus trichocarpa (Torr. & Gray)

    No full text
    International audienceWe report the draft genome of the black cottonwood tree, Populus trichocarpa. Integration of shotgun sequence assembly with genetic mapping enabled chromosome-scale reconstruction of the genome. More than 45,000 putative protein-coding genes were identified. Analysis of the assembled genome revealed a whole-genome duplication event; about 8000 pairs of duplicated genes from that event survived in the Populus genome. A second, older duplication event is indistinguishably coincident with the divergence of the Populus and Arabidopsis lineages. Nucleotide substitution, tandem gene duplication, and gross chromosomal rearrangement appear to proceed substantially more slowly in Populus than in Arabidopsis. Populus has more protein-coding genes than Arabidopsis, ranging on average from 1.4 to 1.6 putative Populus homologs for each Arabidopsis gene. However, the relative frequency of protein domains in the two genomes is similar. Overrepresented exceptions in Populus include genes associated with lignocellulosic wall biosynthesis, meristem development, disease resistance, and metabolite transport

    Prevention of Ventricular Fibrillation, Acute Myocardial Infarction (Myocardial Necrosis), Heart Failure, and Mortality by Bretylium

    No full text

    THE SIGNIFICANCE OF ORGANISMS IN CORROSION

    No full text

    Carcinofetal antigens. III. Further carcinofetal antigens

    No full text
    corecore