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ABSTRACT 
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We report the draft genome of the black cottonwood tree, Populus trichocarpa. 

Integration of shotgun sequence assembly with genetic mapping enabled chromosome-

scale reconstruction of the genome. Over 45,000 putative protein-coding genes were 

identified. Analysis of the assembled genome revealed a whole-genome duplication 

event, with approximately 8,000 pairs of duplicated genes from that event surviving in 

the Populus genome. A second, older duplication event is indistinguishably coincident 

with the divergence of the Populus and Arabidopsis lineages. Nucleotide substitution, 

tandem gene duplication and gross chromosomal rearrangement appear to proceed 

substantially slower in Populus relative to Arabidopsis. Populus has more protein-coding 

genes than Arabidopsis, ranging on average between 1.4-1.6 putative Populus 

homologs for each Arabidopsis gene. However, the relative frequency of protein 

domains in the two genomes is similar. Overrepresented exceptions in Populus include 

genes associated with disease resistance, meristem development, metabolite transport 

and lignocellulosic wall biosynthesis. 

 

KEYWORDS:  Whole-genome shotgun sequencing, genome-wide duplication, perennial 

habit, woody plant, poplar, Salix, Arabidopsis, angiosperm evolution 
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Forests cover thirty percent of the earth’s terrestrial surface (ca., 3.8 billion 

hectares), harbor large amounts of biodiversity, and provide humanity with benefits, 

including clean air and water, lumber, fiber and fuels. Worldwide, one quarter of all 

industrial feedstocks have their origins in forest-based resources(1). Occurring in 

extensive wild populations across continents, large and long-lived forest trees have 

evolved under selective pressures unlike those of annual herbaceous plants. Their 

growth and development involves extensive secondary growth, coordinated signaling 

and distribution of water and nutrients over great distances, and strategic storage and 

re-distribution of metabolites in concordance with inter-annual climatic cycles. The need 

to survive and thrive in fixed locations over centuries under continually changing physical 

and biotic stresses also sets them apart from short-lived plants. Many of the features 

that distinguish trees from other organisms, especially their large sizes and long-

generation times, present challenges to the study of the cellular and molecular 

mechanisms that underlie their unique biology. To enable and facilitate such 

investigations in a relatively well-studied model tree, we describe here the draft genome 

of black cottonwood, Populus trichocarpa (Torr. & Gray) and its comparison with other 

sequenced plant genomes. 
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 Populus trichocarpa was selected as the model forest species for genome 

sequencing not only because of its modest genome size, but also because of its rapid 

growth, relative ease of experimental manipulation, and range of available genetic 

tools(2, 3). The genus is phenotypically diverse and interspecific hybrids facilitate the 

genetic mapping of economically important traits related to growth rate, stature, wood 

properties and paper quality. Dozens of quantitative trait loci (QTL) are already 

mapped(4) and methods of genetic transformation have been developed(5). Under 

appropriate conditions, Populus can reach reproductive maturity in as few as 4-6 years, 

permitting selective breeding for large-scale sustainable plantation forestry. Finally, rapid 

growth of trees coupled with thermochemical or biochemical conversion of the 

lignocellulosic portion of the plant has the potential to provide a renewable energy 

resource with a concomitant reduction of greenhouse gases(6-8).  

 

SEQUENCING and ASSEMBLY  
A single female genotype, ‘Nisqually-1’, was selected and used in a whole-

genome shotgun sequence and assembly strategy(9). Approximately 7.6 million end-

reads representing 4.2 billion high-quality (i.e., Q20 or higher) base pairs were 
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assembled into 2,447 major scaffolds containing an estimated 410 Mb of genomic DNA 

(SOM T1 & T2). On the basis of the depth of coverage of major scaffolds (~7.5X), and 

the total amount of non-organellar shotgun sequence that was generated, the Populus 

genome size was estimated to be 485

3 
+10 Mb, in rough agreement with previous 

cytogenetic estimates of approximately 550 Mb(10). The near completeness of the 

shotgun assembly in protein-coding regions is supported by the identification of more 

than 95% of known Populus cDNA in the assembly (see Gene Content section below). 

6 

9 
The ~75 Mb of unassembled genomic sequence is consistent with cytogenetic 

evidence for ~30% of the genomic being heterochromatic(9). The amount of 

euchromatin contained within the Populus genome was estimated in parallel by 

subtraction on the basis of direct measurements of DAPI-stained prophase and 

metaphase chromosomes (SOM F4). On average, 69.5+0.3% of the genome consisted 

of euchromatin, with a significantly lower proportion of euchromatin in linkage group I 

(66.4

12 

+1.1%), compared to the other 18 chromosomes (69.7+0.03%, p<0.05). In contrast, 

Arabidopsis chromosomes contain roughly 93% euchromatin(11). The unassembled 

shotgun sequences were derived from variants of organellar DNA, including recent 

nuclear translocations, highly repetitive genomic DNA, haplotypic segments that were 

redundant with short subsegments of the major scaffolds (separated due to extensive 

sequence polymorphism, i.e., allelic variants), and contaminants of the template DNA, 

including endophytic microbes inhabiting the leaf and root tissues used for template 

preparation(12) (SOM F1 & T3). The end reads corresponding to chloroplast (SOM F5) 

and mitochondrial genomes were assembled into circular genomes of 157 and 803 kb, 

respectively(9).  

15 

18 

21 

24 

27 

30 

33 

We anchored the 410 Mb of assembled scaffolds to a sequence-tagged genetic 

map (SOM F3). In total, 356 microsatellite markers were used to assign 155 scaffolds 

(335 Mb of sequence) to the 19 P. trichocarpa chromosome-scale linkage groups (LG) 

(13). The vast majority (91%) of the mapped microsatellite markers were colinear with 

the sequence assembly. At the extremes, the smallest chromosome, LGIX (79 cM), is 

covered by two scaffolds containing 12.5 Mb of assembled sequence; whereas the 

largest chromosome, LGI (265 cM), contains 21 scaffolds representing 35.5 Mb (SOM 

F3). We also generated a physical map based on BAC fingerprint contigs using a 

Nisqually-1 BAC library representing an estimated 9.5-fold genome coverage (SOM F2). 

Paired BAC-end sequences from most of the physical map were linked to the large-scale 

assembly, permitting 2,460 of the physical map contigs to be positioned on the genome 
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assembly. Combining the genetic and physical map, nearly 385 Mb of the 410 Mb of 

assembled sequence is placed on a linkage group. 

3 

6 

9 

12 

15 

18 

Unlike Arabidopsis, where predominantly self-fertilizing ecotypes maintain low 

levels of allelic polymorphism, Populus species are predominantly dioecious, which 

results in obligate outcrossing. This compulsory outcrossing, along with wind pollination 

and wind dispersed plumose seeds, results in high levels of gene flow and high levels of 

heterozygosity (i.e., within-individual genetic polymorphisms). Within the heterozygous 

Nisqually-1 genome, we identified 1,241,251 single nucleotide polymorphisms (SNP) or 

small indel polymorphisms for an overall rate of approximately 2.6 polymorphisms per 

kb. Of these polymorphisms the overwhelming majority (83%) occurr in non-coding 

portions of the genome (Table 1). Short insertion/deletion polymorphisms (indels) and 

SNP polymorphisms within exons resulted in some frameshifts and nonsense stop 

codons within predicted exons, respectively, suggesting that null alleles of these genes 

exist in one of the haplotypes. Some of the polymorphisms may be artifacts from the 

assembly process; though these errors were minimized by using stringent criteria for 

SNP identification(9).  

 

GENE ANNOTATION 
We tentatively identified a first-draft reference set of 45,555 protein-coding gene 

loci in the Populus nuclear genome (www.jgi.doe.gov/poplar) using a variety of ab initio, 

homology-based and EST-based methods(14-17) (SOM T5). Similarly, 101 and 52 

genes were annotated in the chloroplast and mitochondrial genomes, respectively

21 

24 

27 

9. To 

aid the annotation process, 4,664 full-length sequences, from full-length enriched cDNA 

libraries from Nisqually-1, were generated and used in training the gene-calling 

algorithms. Prior to gene prediction, repetitive sequences were characterized (SOM F15 

& T14) and masked; additional putative transposable elements were identified and 

subsequently removed from the reference gene set(9). Given the current draft nature of 

the genome, we expect that the gene set in Populus will continue to be refined.  

Approximately 89% of the predicted gene models had homology (E-value<1e-8) 

to the non-redundant (NR) set of proteins from NCBI, including 60% with extensive 

homology over 75% of both model and NR protein lengths. Nearly 12% (5,248) of the 

predicted Populus genes had no detectable similarity to Arabidopsis genes (E-value

30 

<1e-

3); conversely, in the more refined Arabidopsis set, only 9% (2,321) of the predicted 

genes had no similarity to the Populus reference set. Of the 5,248 Populus genes 

33 
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without Arabidopsis similarity, 1,883 have expression evidence from the manually-

curated Populus EST dataset, and of these, 274 have no hits (E-value>1e-3) to the NR 

database(9). Whole-genome oligonucleotide microarray analysis provided evidence of 

tissue-based expression for 53% for the reference gene models (Fig. 1). In addition, 

signal was detected from 20% of genes that were initially annotated and excluded from 

the reference set, suggesting that as many as 4,000 additional genes (or gene 

fragments) may be present. Within the reference gene set, 13,019 pairs of orthologs 

were identified between genes in Populus and Arabidopsis using the best bi-directional 

BLAST hits, with average mutual coverage of these alignments equal to 93%; 11,654 

pairs of orthologs had coverage greater than 90% of gene lengths, with only 156 genes 

with less than 50% coverage. As of June 1, 2006, ~10% (4,378) gene models have been 

manually validated and curated. 
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GENOME ORGANIZATION 
Genome Duplication in the Salicaceae  

Populus and Arabidopsis lineages diverged ca. 100-120 Mya. Analysis of the 

Populus genome provided evidence of a more recent duplication event that impacted 

roughly 92% of the Populus genome. Nearly 8,000 pairs of paralogous genes of similar 

age (excluding tandem or local duplications) were identified (Fig. 2). The relative age of 

the duplicate genes was estimated by the accumulated nucleotide divergence at four-

fold synonymous third-codon transversion position (4DTV) values. A sharp peak in 4DTV 

values, corrected for multiple substitutions, representing a burst of gene duplication, is 

evident at 0.0916+0.0004 (Fig. 3A). Comparison of 1,825 Populus and Salix orthologous 

genes derived from Salix EST suggests that both genera share this whole-genome 

duplication event (Fig. 3B). Moreover, the parallel karyotypes and collinear genetic 

maps(18) of Salix and Populus also support the conclusion that both lineages share the 

same large-scale genome history.  
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33 

If we naively calibrate the molecular clock using synonymous rates observed in 

the Brassicaceae(19) or derived from the Arabidopsis-Oryza divergence(20), we would 

conclude that the genome duplication in Populus is very recent (8-13 Mya as reported by 
19). Yet the fossil record shows that the Populus and Salix lineages diverged 60-65 

million years ago(22-25). Thus the molecular clock in Populus must be ticking at only 

one sixth the estimated rate for Arabidopsis (i.e., 8-13 Mya/60-65 Mya). Qualitatively 

similar slowing of the molecular clock is found in the Populus chloroplast and 
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mitochondrial genomes(9). As a long-lived vegetatively propagated species Populus has 

the potential to successfully contribute gametes to multiple generations. A single 

Populus genotype can persist as a clone on the landscape for millennia(26), and we 

propose that recurrent contributions of “ancient gametes” from very old individuals could 

account for the dramatically reduced rate of sequence evolution. As result of the slowing 

of the molecular clock, the Populus genome most likely resembles the ancestral eurosid 

genome.   
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To test if the burst of gene creation 60-65 Mya was due to a single whole-

genome event or independent but near-synchronous gene duplication events we used a 

variant of the algorithm of Hokamp et al. (27) to identify segments of conserved synteny 

within the Populus genome. The longest conserved syntenic block from the 4DTV ~0.09 

epoch spanned 765 pairs of paralogous genes. In total, 32,577 genes were contained 

within syntenic blocks from the salicoid epoch; half of these genes were contained in 

segments longer than 142 paralogous pairs. The same algorithm, when applied to 

randomly shuffled genes, typically yields duplicate blocks with fewer than 8-9 genes, 

indicating that the Populus gene duplications occurred as a single genome-wide event. 

Through the remainder of this paper this duplication event will be referred to as the 

“salicoid” duplication event.  

Nearly every mapped segment of the Populus genome had a parallel 

“paralogous” segment elsewhere in the genome as a result of the salicoid event (Fig. 2). 

The “pinwheel” patterns can be understood as a whole-genome duplication followed by a 

series of reciprocal tandem terminal fusions between two separate sets of four 

chromosomes each; the first involving LGII, V, VII and XIV and the second involving LGI, 

XI, IV and IX. In addition, several chromosomes appear to have experienced minor 

reorganizational exchanges. Furthermore, LGI appears to be the result of multiple 

rearrangements involving three major tandem fusions. These results suggest that the 

progenitor of Populus had a base chromosome number of 10 which, following the whole-

genome duplication event, experienced a genome-wide reorganization and diploidization 

of the duplicated chromosomes into four pairs of complete paralogous chromosomes 

(LGVI, VIII, X, XII, XIII, XV, XVI, XVIII & XIX), two sets of four chromosomes each 

containing a terminal translocation (LGI, II, IV, V, VII, IX & XI) and one chromosome 

containing three terminally joined chromosomes (LGIII with I or XVII with VII). The 

colinearity of genetic maps among multiple Populus species suggests that the genome 

reorganization must have occurred prior to the evolution of the modern taxa of Populus.  
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Genome Duplication in a Common Ancestor of Populus and Arabidopsis 
The distribution of 4DTV values for paralogous pairs of genes also shows that a large 

fraction of the Populus genome falls in a set of duplicated segments anchored by gene 

pairs with 4DTV at 0.364

3 

+0.001, representing the residue of a more ancient, large-scale, 

apparently synchronous duplication event (Fig 3A). This relatively older duplication event 

covers approximately 59% of the Populus genome with 16% of genes in these segments 

present in two copies. Since this duplication preceded and is therefore superimposed 

upon the salicoid event, each genomic region is potentially covered by four such 

segments. Similarly, the Arabidopsis genome experienced an older “beta” duplication 

that preceded the Brassicaceae-specific “alpha” event(28-32).  
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We next asked if the Arabidopsis “beta” (30, 32) and Populus 4DTV~0.36 

duplication events were (i) independent genome-wide duplications that occurred after 

the split from the last common eurosid ancestor (H1) or (ii) a single shared duplication 

event that occurred in an ancestral lineage (i.e., prior to the eurosid I/II divergence) (H2). 

These two hypotheses have very different implications for the interpretation of homology 

between Populus and Arabidopsis. Under H1 each genomic segment in one species is 

homologous to four segments in the other, while under H2 each segment is homologous 

to only two segments in the other species. These hypotheses were tested by comparing 

the relative distances between gene pairs sampled within and between Populus and 

Arabidopsis. H2 was generally supported(9), but, we could not reject H1. We can only 

conclude that the Populus genome duplication occurred very close to the time of 

divergence of the Eurosid I and II lineages(9), with slight support for a shared 

duplication. This coincident timing raises the possibility of a causal link between this 

duplication and rapid diversification early in eurosid (and perhaps core eudicot) history. 

Through the remainder of this paper this older Populus/Arabidopsis duplication event will 

be referred to as the “eurosid” duplication event. We note that the salicoid duplication 

occurred independently of the eurosid duplication observed in the Arabidopsis genome.  

 

GENE CONTENT  
 Although Populus has substantially more protein-coding genes than Arabidopsis, 

the relative frequency of domains represented in protein databases (Prints, Prosite, 

Pfam, ProDom & SMART) in the two genomes is similar(9). However, the most common 

domains occur in Populus in a 1.4-1.8 to one ratio compared with Arabidopsis. 
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Noteworthy outliers in Populus include genes and gene domains associated with 

disease and insect resistance (e.g., leucine rich repeats, 1,271 vs. 527; NB-ARC 

domain, 302 vs. 141; thaumatin, 55 vs. 24, Populus vs. Arabidopsis, respectively), 

meristem development (e.g., NAC transcription factors, 157 vs. 100, respectively) and 

metabolite/nutrient transport (e.g., oligopeptide transporter of the POT and OPT families, 

129 vs. 61; potassium transporter, 30 vs. 13, respectively).  
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Some domains were underrepresented in Populus compared to Arabidopsis. For 

example, the F-box domain was twice as prevalent in Arabidopsis as in Populus (624 vs. 

303, respectively). The F-box domain is involved in diverse and complex interactions 

involving protein degradation via the ubiquitin-26S proteosome pathway(33). Many of the 

ubiquitin-associated domains are underrepresented in Populus compared to Arabidopsis 

(e.g., Ulp1 protease family, C-terminal catalytic domain, 10 vs. 63, respectively). 

Moreover, the RING finger domains are nearly equally present in both genomes (503 vs. 

407, respectively), suggesting that protein degradation pathways in the two organisms 

are metabolically divergent. 

 

The Common Eurosid Gene Set 
 The Populus and Arabidopsis gene sets were compared to infer the conserved 

gene complement of their common eurosid ancestor, integrating information from 

nucleotide divergence, synteny and mutual best BLAST-hit analysis(9). The ancestral 

eurosid genome contained at least 11,666 protein-coding genes, along with an 

undetermined number that were either lost in one or both of the lineages or whose 

homology could not be detected. These ancestral genes were the progenitors of gene 

families of typically 1-4 descendents in each of the complete plant genomes and account 

for 28,257 Populus and 17,521 Arabidopsis genes. Gene family lists are accessible at: 

www.phytozome.net. The gene predictions in these two genomes that could not be 

accounted for in the eurosid clusters were often fragmentary or could not be confidently 

assigned orthology and may include novel or rapidly evolving genes in the Populus 

and/or Arabidopsis lineages, as well as poorly predicted genes. 
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Non-Coding RNAs  
 Based on a series of publicly available RNA detection algorithms(34), including 

tRNAScan-SE, INFERNAL and snoScan, we identified 817 putative transfer RNAs 

(tRNA), 22 U1, 26 U2, 6 U4, 23 U5, 11 U6 spliceosomal RNAs (snRNA), 339 putative 
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C/D small nucleolar RNAs (snoRNA) and 88 predicted H/ACA snoRNAs in the Populus 

assembly. All 57 possible anti-codon tRNA were found. One selenocysteine tRNA was 

detected and two possible suppressor tRNA (anticodons which bind stop codons) were 

also discovered. Populus has nearly 1.3 times as many tRNA genes as Arabidopsis. In 

contrast to Arabidopsis (SOM F7A), the copy number of tRNA in Populus was 

significantly and positively correlated with amino acid occurrence in predicted gene 

models (SOM F7B). Populus has a 1.3 to 1.0 ratio in the number of snRNA compared 

with Arabidopsis, yet U1, U2 and U5 are overrepresented in Populus while U4 is 

underrepresented. Furthermore, U14 was not detected in Arabidopsis. The snRNA and 

snoRNA have not been experimentally verified in Populus.  
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There are 169 identified microRNA (miRNA) genes representing 21 families in 

Populus (SOM T7). In Arabidopsis, these 21 families contain 91 miRNA genes, 

representing a 1.9X expansion in Populus, primarily in miR169 and miR159/319. All 21 

miRNA families have regulatory targets that appear to be conserved among Arabidopsis 

and Populus (SOM T8). Like the miRNA genes themselves, the number of predicted 

targets for these miRNA is expanded in Populus (147) compared to Arabidopsis (89). 

Similarly, the genes that mediate RNAi are also overrepresented in Populus (21) 

compared to Arabidopsis (11) (e.g., AGO1 class, 7 vs. 3; RNA helicase 2 vs.1; HEN, 2 

vs.1; HYL1-like (dsRNA binding proteins) 9 vs. 5, respectively).  

 

Tandem Duplications 
In Populus there were 1,518 tandemly duplicated arrays of two or more genes 

based on a Smith-Waterman alignment E-value<e-25 and a 100 kb window. The total 

number of genes in such arrays was 4,839 and the total length of tandemly duplicated 

segments in Populus was 47.9 Mb or 15.6% of the genome (SOM F8). By the same 

criteria, there are 1,366 tandemly duplicated segments in Arabidopsis, covering 32.4 Mb 

or 27% of the genome. By far the most common number of genes within a single array 

was two, with 958 such arrays in Populus and 805 in Arabidopsis. Arabidopsis had a 

larger number of arrays containing six or more genes than did Populus. Tandem 

duplications thus appear to be relatively more common in Arabidopsis than in Populus. 

This may in part be due to difficulties in assembling tandem repeats from a whole-

genome shotgun sequencing approach, particularly when tandemly-duplicated genes 

are highly conserved. Alternatively, the Populus genome may be undergoing 

rearrangements at a slower rate than the Arabidopsis genome, which is consistent with 
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our observations of reduced chromosomal rearrangements and slower nucleotide 

substitution rates in Populus. 

In some cases, genes were highly duplicated in both species, with some tandem 

duplications predating the Populus-Arabidopsis split(9). The largest number of tandem 

repeats in Populus in a single array was 24 and contained genes with high homology to 

S-locus specific glycoproteins. Genes of this class also occur as tandem repeats in 

Arabidopsis, with the largest segments containing 14 tandem duplicates on chromosome 

1. One of the InterPro domains in this protein, 

3 

6 

IPR008271, a serine/threonine protein 

kinase active site, was the most frequent domain in tandemly repeated genes in both 

species (SOM F8). Other common domains in both species were the leucine-rich repeat 

(

9 

IPR007090, primarily from tandem repeats of disease resistance genes), the 

pentatricopeptide repeat RNA-binding proteins (IPR002885), and the UDP-

glucuronosyl/UDP-glucosyltransferase domain (

12 
IPR002213) (SOM T9).  

In contrast, some genes were highly expanded in tandem duplicates in one 

genome and not in the other (SOM F8). For example, one of the most frequent classes 

of tandemly duplicated genes in Arabidopsis was F-box genes, with a total of 342 

involved in tandem duplications, of which the largest segment contained 24 F-box 

genes.. Populus contains only 37 F-box genes in tandem duplications, with the largest 

segment containing only three genes.  
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POST-DUPLICATION GENE FATE 
Functional expression divergence 

In Populus, 20 of the 66 salicoid-event duplicate gene pairs contained in 19 

Populus EST libraries (2.3% of the total) showed differential expression(9) (displayed 

significant deviation in EST frequencies per library, e.g., Fig. 4). Eleven of 18 eurosid-

event duplicate gene pairs (2.7% of the total) also displayed significant deviation in EST 

frequencies per library. Many of the duplicate gene pairs that displayed significant 

overrepresentation in one or more of the 19 sampled libraries were involved in protein-

protein interactions (e.g., annexin) or protein folding (e.g., cyclophilins). In the eurosid 

set, there was a greater divergence in the best BLAST hit among pairwise sets of genes. 

These results support functional expression divergence among some duplicated gene 

pairs in Populus. 

As a further test for variation in gene expression among duplicated genes we 

examined whole-genome oligonucleotide microarray data containing the 45,555 
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promoted genes(9). There was significantly lower differential expression in the salicoid 

duplicated pairs of genes (mean: 5%) relative to eurosid duplications (mean: 11%), 

again suggesting that differential expression patterns for retained paralogous gene pairs 

is an ongoing process that has had more time to occur in eurosid pairs (Fig. 5). This 

difference could also be due to absolute expression level, which may vary systematically 

between the two duplication events. Moreover, differential expression was more evident 

in the wood-forming organs. Almost 14% and 13% (2,632 pairs of genes) of eurosid 

duplicated genes in the nodes and internodes, respectively, displayed differential 

expression compared to 8% or lower in roots and young leaves (Fig. 5).   
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Single Nucleotide Polymorphisms  
Populus is a highly polymorphic taxon and substantial numbers of SNP are 

present even within a single individual (Table 1). The ratio of nonsynonymous to 

synonymous substitution rate (ω=dN/dS) was calculated as an index of selective 

constraints for alleles of individual genes(9). The overall average dN across all genes 

was 0.0014, while dS value was 0.0035, for a total ω of 0.40, suggesting that the 

majority of coding regions in the Populus genome are subject to purifying selection. 

There was a significant, negative correlation between ω and the 4DTV distance to the 

most closely related paralog (r=-0.034, p=0.028), which is consistent with the 

expectation of higher levels of nonsynonymous polymorphism in recently duplicated 

genes due to functional redundancy(20, 35). Similarly, genes with recent tandem 

duplicates (4DTV<0.2) had significantly higher ω than genes with no recent tandem 

duplicates (Wilcoxon Rank Sum Z=8.65, p<0.0001) (SOM T10).  
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The results for tandemly duplicated genes were consistent with expectations for 

accelerated evolution of duplicated genes(20). However, this expectation was not upheld 

for paralogous pairs of genes from the whole-genome duplication events. Relative rates 

of nonsynonymous substitution were actually lower for genes with paralogs from the 

salicoid and eurosid whole-genome duplication events than for genes with no paralogs 

(SOM T11). One possible explanation for this discrepancy is that the apparent single-

copy genes have a corresponding overrepresentation of rapidly-evolving pseudogenes. 

However, this does not appear to be the case, as demonstrated by an analysis of gene 

size, synonymous substitution rate and minimum genetic distance to the closest paralog 

as covariates in an analysis of variance with ω as the response variable (SOM T11). 

Therefore, genes with no paralogs from the salicoid and eurosid duplication events seem 
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to be under lower selective constraints and purifying selection is apparently stronger for 

genes with paralogs retained from the whole-genome duplications. Chapman et al. (36) 

have recently proposed the concept of functional buffering to account for similar 

reduction in detected mutations in paralogs from whole-genome duplications in 

Arabidopsis and Oryza. The vegetative propagation habit of Populus may also favor the 

conservation of nucleotide sequences among duplicated genes, in that complementation 

among duplicate pairs of genes would minimize loss of gene function associated with the 

accumulation of deleterious somatic mutations.  
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Gene Family Evolution 
Lignocellulosic Wall Formation Among the processes unique to tree biology, one of 

the most obvious is the yearly development of secondary xylem from the vascular 

cambium. Populus orthologs of the approximately 20 Arabidopsis genes/gene families 

involved in or associated with cellulose biosynthesis were identified. The Populus 

genome has 93 cellulose synthesis-related genes vs. 78 in Arabidopsis. Arabidopsis 

genome encodes 10 CesA genes belonging to six classes known to participate in 

cellulose microfibril biosynthesis(37). Populus has 18 CesA genes(38), including 

duplicate copies of CesA7 and CesA8 homologs. Populus homologs of Arabidopsis 

CesA4, CesA7 and CesA8 are coexpressed during xylem development and tension 

wood formation(39). Furthermore, one pair of CesA genes appears unique to Populus, 

with no homologs found in Arabidopsis(40). Many other types of genes associated with 

cellulose biosynthesis, e.g., KOR, SuSY, COBRA and FRA2, occur in duplicate pairs in 

Populus relative to single-copy Arabidopsis genes(39). For example COBRA, a regulator 

of cellulose biogenesis(41), is a single-copy gene in Arabidopsis yet in Populus there are 

four copies.  

 The repertoire of acknowledged hemicellulose biosynthetic genes in Populus is 

generally similar to that in Arabidopsis. However, Populus has more genes encoding α-

L-fucosidases and fewer genes encoding α-L-fucosyltransferases than does 

Arabidopsis, which is consistent with the lower xyloglucan fucose content(42) in Populus 

relative to Arabidopsis.  

Lignin, the second most abundant secondary cell wall polymer after cellulose, is 

a complex polymer of monolignols (hydroxycinnamyl alcohols) that encrusts and 

interacts with the cellulose/hemicellulose matrix of the secondary cell wall(43). The full 

set of 34 Populus phenylpropanoid and lignin biosynthetic genes (SOM T13) were 
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identified by sequence alignment to the known Arabidopsis phenylpropanoid and lignin 

genes(44, 45). The size of Populus gene families encoding these enzymes is generally 

larger than in Arabidopsis (34 vs. 18, respectively). The only exception is CAD (cinnamyl 

alcohol dehydrogenase), which is encoded by a single gene in Populus and two genes in 

Arabidopsis (Fig. 6C); CAD is also encoded by only a single gene in Pinus taeda(46, 

47). Two lignin-related Populus C4H genes are strongly co-expressed in tissues related 

to wood formation while the three Populus C3H genes show reciprocally exclusive 

expression patterns(48).  
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Secondary Metabolism Populus produce a broad array of non-structural, carbon-rich 

secondary metabolites that exhibit wide variation in abundance, stress inducibility, and 

effects on tree growth and host-pest interactions(49-53). Shikimate-phenylpropanoid 

derived phenolic esters, phenolic glycosides and condensed tannins and their flavonoid 

precursors comprise the largest classes of these metabolites. Phenolic glycosides and 

condensed tannins alone can constitute up to 35% leaf dry weight and are abundant in 

buds, bark and roots of Populus(50, 54, 55).  

The flavonoid biosynthetic genes are well annotated in Arabidopsis(56) and 

almost all (with the exception of flavonol synthase) are encoded by single-copy genes. In 

contrast, all but three such enzymes (chalcone isomerase, flavonoid 3’-hydroxylase and 

flavanone 3-hydroxylase) are encoded by multiple genes in Populus(53). For example, 

the chalcone synthase (CHS), controlling the committed step to flavonoid biosynthesis, 

has expanded to at least six genes in Populus. In addition, Populus contains two genes 

each for flavone synthase II (CYP98B) and flavonoid 3', 5'-hydroxylase (CYP75A12 and 

CYP75A13) which are absent in Arabidopsis. Furthermore, three Populus genes encode 

leucoanthocyanidin reductase, required for the synthesis of condensed tannin precursor 

2,3-trans-flavan-3-ols, a stereochemical configuration also lacking in Arabidopsis(57). In 

contrast to the 32 terpenoid synthases (TPS) genes of secondary metabolism identified 

in the Arabidopsis genome(58), the Populus genome contains at least 47 TPS genes, 

suggesting a wide-ranging capacity for the formation of terpenoid secondary 

metabolites.  

A number of phenylpropanoid-like enzymes have been annotated in the 

Arabidopsis genome(44, 45, 59-61). One example is the family encoding cinnamyl 

alcohol dehydrogenase (CAD). In addition to the single Populus CAD gene involved in 

lignin biosynthesis, several other clades of CAD-like (CADL) genes are present, most of 
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which fall within larger sub-families containing enzymes related to multifunctional alcohol 

dehydrogenases (Fig. 6). This comparative analysis makes it clear that there has been 

selective expansion and retention of Populus CADL gene families. For example, Populus 

contains seven CADL genes (PoptrCADL1-7; Fig. 6C) encoding enzymes related to the 

Arabidopsis BAD1 and BAD2 enzymes with apparent benzyl alcohol dehydrogenase 

activities(62). BAD1 and BAD2 are known to be pathogen-inducible, suggesting that this 

group of Populus genes, including Populus SAD gene, previously characterized as 

encoding a sinapaldehyde-specific CAD enzyme(63), may be involved in chemical 

defense.  
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Disease Resistance The likelihood that a perennial plant will encounter a pathogen or 

herbivore before reproduction is near unity. The long-generation intervals for trees make 

it difficult for such plants to match the evolutionary rates of a microbial or insect pest. 

Aside from the formation of thickened cell walls and the synthesis of secondary 

metabolites that constitute a first line of defense against microbial and insect pests, 

plants use a variety of disease-resistance (R) genes.  

The largest class of characterized R genes encodes intracellular proteins that 

contain a nucleotide-binding site (NBS) and carboxy-terminal leucine-rich-repeats (LRR) 

(64). The NBS-coding R gene family is one of the largest in Populus, with 399 members, 

approximately 2-fold higher than in Arabidopsis. The NBS family can be divided into 

multiple subfamilies with distinct domain organizations, including 64 TIR-NBS-LRR 

genes, 10 truncated TIR-NBS that lack an LRR, 233 non-TIR-NBS-LRR genes and 17 

unusual TIR-NBS-containing genes not identified previously in Arabidopsis (TNLT, TNLN 

or TCNL) (Table 2). Five gene models coding for TNL proteins contained a predicted N-

terminal nuclear localization signal (NLS) (65). The number of non-TIR-NBS-LRR genes 

in Populus is also much higher than that in Arabidopsis (209 vs. 57, respectively). 

Intriguingly, 40 non-TIR-NBS genes, not found in Arabidopsis, carry an N-terminal BED 

DNA-binding zinc finger domain that was also found in the Oryza Xa1 gene. These 

findings suggest that domain cooption occurred in Populus. Most NBS-LRR (ca. 65%) in 

Populus occur as singletons or in tandem duplications and the distribution of pairwise 

genetic distances among these genes suggests a recent expansion of this family. That 

is, only 10% of the NBS-LRR genes are associated with the eurosid and salicoid 

duplication events, compared with 55% of the extracellular LRR receptor-like kinase 

genes, for example (SOM F10). 
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Several conserved signaling components such as RAR1, EDS1, PAD4 and 

NPR1, known to be recruited by R genes, also contain multiple homologs in Populus. 

For example, two copies of the PAD4 gene, which functions upstream of salicylic acid 

(SA) accumulation, and five copies of the NPR1, an
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 important regulator of responses 

downstream of SA, are found in Populus. Nearly all genes known to control disease 

resistance signaling in Arabidopsis have putative orthologs in Populus. Populus has a 

larger number of β-1, 3-glucanase and chitinase genes than Arabidopsis (131 vs. 73, 

respectively). In summary, the structural and genetic diversity that exists among R genes 

and their signaling components in Populus is remarkable and suggests that unlike the 

rest of the genome, contemporary diversifying selection has played an important role in 

the evolution of disease resistance genes in Populus. Such diversification suggests that 

enhanced ability to detect and respond to biotic challenges via R gene-mediated 

signaling may be critical over a decades-long life span of this genus.  

Membrane Transporters Attributes of Populus biology such as massive interannual, 

seasonal and diurnal metabolic shifts and re-deployment of carbon and nitrogen may 

require an elaborate array of transporters. Investigation of gene families coding for 

transporter proteins (http://plantst.genomics.purdue.edu/) in the Populus genome 

revealed a general expansion relative to Arabidopsis (1,722 vs. 959, Populus vs. 

Arabidopsis, respectively) (SOM T12). Five gene families, coding for ATP-binding 

cassette proteins (ABC transporters, 226 gene models), major facilitator superfamily 

proteins (MFS, 187 genes), drug/metabolite transporters (DMT, 108 genes), amino 

acid/auxin permeases (AAAP, 95 genes) and proton-dependent oligopeptide 

transporters (POT, 90 genes), accounted for more than 40% of the total number of 

transporter gene models (SOM F14). Some large families such as those encoding POT 

(4.3X relative to Arabidopsis), glutamate-gated ion channels (3.7X), potassium uptake 

permeases (2.3X) and ABC transporters (1.9X) are expanded in Populus. A novel 

subfamily of five putative aquaporins, lacking in the Arabidopsis, was identified. Populus 

also harbors seven transmembrane receptor genes only found so far in fungi, and two 

genes, identified as mycorrhizal-specific phosphate transporters, confirming that the 

mycorrhizal symbiosis may have a significant impact on the mineral nutrition of this long-

lived species. This expanded inventory of transporters could conceivably play a role in 

adaptation to nutrient-limited forest soils, long-distance transport and storage of water 
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and metabolites, secretion and movement of secondary metabolites, and/or mediation of 

resistance to pathogen-produced secondary metabolites or other toxic compounds.  
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Phytohormones Both physiological and molecular studies have indicated the 

importance of hormonal regulation underlying plant development. Auxin, gibberellin, 

cytokinin and ethylene responses are of particular interest in tree biology. 

Many auxin responses(66-71) are controlled by auxin response factor (ARF) 

transcription factors, which work together with cognate AUX/IAA repressor proteins to 

regulate auxin-responsive target genes(72, 73). A phylogenetic analysis using the known 

and predicted ARF protein sequences showed that Populus and Arabidopsis ARF gene 

families have expanded independently since they diverged from their common ancestor. 

Six duplicate ARF genes in Populus encode paralogs of ARF genes that are single-copy 

Arabidopsis genes, including ARF5 (MONOPTEROS), an important gene required for 

auxin-mediated signal transduction and xylem development. Furthermore, five 

Arabidopsis ARF genes have four or more predicted Populus ARF gene paralogs. In 

contrast to ARF genes, Populus does not contain a dramatically expanded repertoire of 

AUX/IAA genes relative to Arabidopsis (35 vs. 29, respectively) (74). Interestingly, there 

is a group of four Arabidopsis AUX/IAA genes with no apparent Populus orthologs, 

suggesting Arabidopsis-specific functions.  

Gibberellins are thought to regulate multiple processes during wood and root 

development, including xylem fiber length(75). Among all gibberellin biosynthesis and 

signaling genes, the Populus GA20-oxidase gene family is the only family with 

approximately 2-fold increase in gene number relative to Arabidopsis, indicating that 

most of the duplicated genes that arose from the salicoid duplication event have been 

lost. GA20-oxidase appears to control flux in the biosynthetic pathway leading to the 

bioactive gibberellins GA1 and GA4. The higher complement of GA20-oxidase genes 

may have biological significance in Populus with respect to secondary xylem and fiber 

cell development. 

 Cytokinins are thought to control the identity and proliferation of cell types 

relevant for wood formation as well as general cell division(67). The total number of 

members in gene families encoding cytokinin homeostasis related isopentenyl 

transferases (IPT) and cytokinin oxidases is roughly similar between Populus and 

Arabidopsis, although there appears to be lineage-specific expansion of IPT subfamilies. 

The cytokinin signal transduction pathway represents a two-component phosphorelay 
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system, where a two-component hybrid receptor initiates a phosphotransfer via histidine-

containing phosphotransmitters (HPt) to phospho-accepting response regulators (RR). 

One family of genes, encoding the two-component receptors (i.e., CKI1), is notably 

expanded in Populus (4 vs. 1, respectively) (76). Gene families coding for recently 

identified pseudo HPt and atypical RR are overrepresented in Populus relative to 

Arabidopsis (2.5X and 4.0X, respectively). Both of these gene families have been 

implicated in the negative regulation of cytokinin signaling(67, 77), which is consistent 

with the idea of increased complexity in regulation of cytokinin signal transduction in 

Populus.  
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Populus and Arabidopsis genomes contain almost identical number of genes for 

the three enzymes of ethylene biosynthesis, whereas the number of genes for proteins 

involved in ethylene perception and signaling is higher in Populus. For example, Populus 

has seven predicted genes for ethylene receptor proteins and Arabidopsis has five; the 

constitutive triple response (CTR1) kinase that acts just downstream of the receptor is 

encoded by four genes in Populus and only one in Arabidopsis(78). The number of 

ethylene-responsive element binding factor (ERF) proteins (a subfamily of AP2/ERF 

family) is higher in Populus than in Arabidopsis (172 vs. 122, respectively). The 

increased variation in the number of ERF transcription factors may be involved in the 

ethylene-dependent processes specific to trees, such as tension wood formation(68) and 

the establishment of dormancy(71).  

 

CONCLUDING REMARKS 
Our initial analyses provide a flavor of the opportunities for comparative plant 

genomics made possible by the generation of the Populus genome sequence. A 

complex history of whole-genome duplications, chromosomal rearrangements and 

tandem duplications has shaped the genome that we observe today.  The differences in 

gene content between Populus and Arabidopsis have provided some tantalizing insights 

into the possible molecular bases of their strongly contrasting life histories, though it is 

important to note that factors unrelated to gene content (e.g., regulatory elements, 

miRNA, post-translational modification, or epigenetic modifications) may ultimately be of 

equal or greater importance. With the sequence of Populus, researchers can now go 

beyond what could be learned from Arabidopsis alone to explore hypotheses to linking 

genome sequence features to wood development, nutrient and water movement, crown 

development, and disease resistance in perennial plants. The availability of the Populus 
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genome sequence will enable continuing comparative genomics studies among species 

that will shed new light on genome reorganization and gene family evolution. 

Furthermore, the genetics and population biology of Populus make it an immense source 

of allelic variation. Because Populus is an obligate outcrossing species, recessive alleles 

tend to be maintained in a heterozygous state. Informatics tools enabled by the 

sequence, assembly and annotation of the Populus genome will facilitate the 

characterization of allelic variation in wild Populus populations adapted to a wide range 

of environmental conditions and gradients over large portions of the northern 

hemisphere. Such variants represent a rich reservoir of molecular resources useful in 

biotechnological applications, development of alternative energy sources, and mitigation 

of anthropogenic environmental problems. Finally, the keystone role of Populus in many 

ecosystems provides the first opportunity for the application of genomics approaches to 

questions with ecosystem-scale implications(79, 80).  
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