286 research outputs found

    A Pedestrian Introduction to Gamow Vectors

    Full text link
    The Gamow vector description of resonances is compared with the S-matrix and the Green function descriptions using the example of the square barrier potential. By imposing different boundary conditions on the time independent Schrodinger equation, we obtain either eigenvectors corresponding to real eigenvalues and the physical spectrum or eigenvectors corresponding to complex eigenvalues (Gamow vectors) and the resonance spectrum. We show that the poles of the S matrix are the same as the poles of the Green function and are the complex eigenvalues of the Schrodinger equation subject to a purely outgoing boundary condition. The intrinsic time asymmetry of the purely outgoing boundary condition is discussed. Finally, we show that the probability of detecting the decay within a shell around the origin of the decaying state follows an exponential law if the Gamow vector (resonance) contribution to this probability is the only contribution that is taken into account.Comment: 25 RevTex pages, 3 figure

    Cannabinoid receptor type 2 activation induces a microglial anti-inflammatory phenotype and reduces migration via MKP induction and ERK dephosphorylation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cannabinoid receptor type 2 (CBR2) inhibits microglial reactivity through a molecular mechanism yet to be elucidated. We hypothesized that CBR2 activation induces an anti-inflammatory phenotype in microglia by inhibiting extracellular signal-regulated kinase (ERK) pathway, via mitogen-activated protein kinase-phosphatase (MKP) induction. MKPs regulate mitogen activated protein kinases, but their role in the modulation of microglial phenotype is not fully understood.</p> <p>Results</p> <p>JWH015 (a CBR2 agonist) increased MKP-1 and MKP-3 expression, which in turn reduced p-ERK1/2 in LPS-stimulated primary microglia. These effects resulted in a significant reduction of tumor necrosis factor-α (TNF) expression and microglial migration. We confirmed the causative link of these findings by using MKP inhibitors. We found that the selective inhibition of MKP-1 by Ro-31-8220 and PSI2106, did not affect p-ERK expression in LPS+JWH015-treated microglia. However, the inhibition of both MKP-1 and MKP-3 by triptolide induced an increase in p-ERK expression and in microglial migration using LPS+JWH015-treated microglia.</p> <p>Conclusion</p> <p>Our results uncover a cellular microglial pathway triggered by CBR2 activation. These data suggest that the reduction of pro-inflammatory factors and microglial migration via MKP-3 induction is part of the mechanism of action of CBR2 agonists. These findings may have clinical implications for further drug development.</p

    Stochastic Self-Similar and Fractal Universe

    Full text link
    The structures formation of the Universe appears as if it were a classically self-similar random process at all astrophysical scales. An agreement is demonstrated for the present hypotheses of segregation with a size of astrophysical structures by using a comparison between quantum quantities and astrophysical ones. We present the observed segregated Universe as the result of a fundamental self-similar law, which generalizes the Compton wavelength relation. It appears that the Universe has a memory of its quantum origin as suggested by R.Penrose with respect to quasi-crystal. A more accurate analysis shows that the present theory can be extended from the astrophysical to the nuclear scale by using generalized (stochastically) self-similar random process. This transition is connected to the relevant presence of the electromagnetic and nuclear interactions inside the matter. In this sense, the presented rule is correct from a subatomic scale to an astrophysical one. We discuss the near full agreement at organic cell scale and human scale too. Consequently the Universe, with its structures at all scales (atomic nucleus, organic cell, human, planet, solar system, galaxy, clusters of galaxy, super clusters of galaxy), could have a fundamental quantum reason. In conclusion, we analyze the spatial dimensions of the objects in the Universe as well as spacetime dimensions. The result is that it seems we live in an El Naschie's E infinity Cantorian spacetime; so we must seriously start considering fractal geometry as the geometry of nature, a type of arena where the laws of physics appear at each scale in a self--similar way as advocated long ago by the Swedish school of astrophysics.Comment: 17 pages, 3 figures, accepted by Chaos, Solitons & Fractla

    Discovery of a Supernova Explosion at Half the Age of the Universe and its Cosmological Implications

    Get PDF
    The ultimate fate of the universe, infinite expansion or a big crunch, can be determined by measuring the redshifts, apparent brightnesses, and intrinsic luminosities of very distant supernovae. Recent developments have provided tools that make such a program practicable: (1) Studies of relatively nearby Type Ia supernovae (SNe Ia) have shown that their intrinsic luminosities can be accurately determined; (2) New research techniques have made it possible to schedule the discovery and follow-up observations of distant supernovae, producing well over 50 very distant (z = 0.3 -- 0.7) SNe Ia to date. These distant supernovae provide a record of changes in the expansion rate over the past several billion years. By making precise measurements of supernovae at still greater distances, and thus extending this expansion history back far enough in time, we can distinguish the slowing caused by the gravitational attraction of the universe's mass density Omega_M from the effect of a possibly inflationary pressure caused by a cosmological constant Lambda. We report here the first such measurements, with our discovery of a Type Ia supernova (SN 1997ap) at z = 0.83. Measurements at the Keck II 10-m telescope make this the most distant spectroscopically confirmed supernova. Over two months of photometry of SN 1997ap with the Hubble Space Telescope and ground-based telescopes, when combined with previous measurements of nearer SNe Ia, suggests that we may live in a low mass-density universe. Further supernovae at comparable distances are currently scheduled for ground and space-based observations.Comment: 12 pages and 4 figures (figure 4 is repeated in color and black and white) Nature, scheduled for publication in the 1 January, 1998 issue. Also available at http://www-supernova.lbl.go

    Fairy Tales: Attraction and Stereotypes in Same-Gender Relationships

    Get PDF
    We examine the process of romantic attraction in same-gender relationships using open and closed-ended questionnaire data from a sample of 120 men and women in Northern California. Agreeableness (e.g., kind, supportive) and Extraversion (e.g., fun, sense of humor) are the two most prominent bases of attraction, followed by Physical Attractiveness (e.g., appearance, sexy). The least important attractors represent traits associated with material success (e.g., financially secure, nice house). We also find evidence of seemingly contradictory attraction processes documented previously in heterosexual romantic relationships, in which individuals become disillusioned with the qualities in a partner that were initially appealing. Our findings challenge common stereotypes of same-gender relationships. The results document broad similarities between same-gender and cross-gender couples in attraction

    Cross-validation of a semantic segmentation net-work for natural history collection specimens

    Get PDF
    Semantic segmentation has been proposed as a tool to accelerate the processing of natural history collection images. However, developing a flexible and resilient segmentation network requires an approach for adaptation which allows processing different datasets with minimal training and validation. This paper presents a cross-validation approach designed to determine whether a semantic segmentation network possesses the flexibility required for application across different collections and institutions. Consequently, the specific objectives of cross-validating the semantic segmentation network are to (a) evaluate the effectiveness of the network for segmenting image sets derived from collections different from the one in which the network was initially trained on; and (b) test the adaptability of the segmentation network for use in other types of collections. The resilience to data variations from different institutions and the portability of the network across different types of collections are required to confirm its general applicability. The proposed validation method is tested on the Natural History Museum semantic segmentation network, designed to process entomological microscope slides. The proposed semantic segmentation network is evaluated through a series of cross-validation experiments designed to test using data from two types of collections: microscope slides (from three institutions) and herbarium sheets (from seven institutions). The main contribution of this work is the method, software and ground truth sets created for this cross-validation as they can be reused in testing similar segmentation proposals in the context of digitization of natural history collections. The cross-validation of segmentation methods should be a required step in the integration of such methods into image processing workflows for natural history collections

    Designing an herbarium digitisation workflow with built-in image quality management

    Get PDF
    Digitisation of natural history collections has evolved from creating databases for the recording of specimens’ catalogue and label data to include digital images of specimens. This has been driven by several important factors, such as a need to increase global accessibility to specimens and to preserve the original specimens by limiting their manual handling. The size of the collections pointed to the need of high throughput digitisation workflows. However, digital imaging of large numbers of fragile specimens is an expensive and time-consuming process that should be performed only once. To achieve this, the digital images produced need to be useful for the largest set of applications possible and have a potentially unlimited shelf life. The constraints on digitisation speed need to be balanced against the applicability and longevity of the images, which, in turn, depend directly on the quality of those images. As a result, the quality criteria that specimen images need to fulfil influence the design, implementation and execution of digitisation workflows. Different standards and guidelines for producing quality research images from specimens have been proposed; however, their actual adaptation to suit the needs of different types of specimens requires further analysis. This paper presents the digitisation workflow implemented by Meise Botanic Garden (MBG). This workflow is relevant because of its modular design, its strong focus on image quality assessment, its flexibility that allows combining in-house and outsourced digitisation, processing, preservation and publishing facilities and its capacity to evolve for integrating alternative components from different sources. The design and operation of the digitisation workflow is provided to showcase how it was derived, with particular attention to the built-in audit trail within the workflow, which ensures the scalable production of high-quality specimen images and how this audit trail ensures that new modules do not affect either the speed of imaging or the quality of the images produced

    Search for heavy neutrinos mixing with tau neutrinos

    Get PDF
    We report on a search for heavy neutrinos (\nus) produced in the decay D_s\to \tau \nus at the SPS proton target followed by the decay \nudecay in the NOMAD detector. Both decays are expected to occur if \nus is a component of ντ\nu_{\tau}.\ From the analysis of the data collected during the 1996-1998 runs with 4.1×10194.1\times10^{19} protons on target, a single candidate event consistent with background expectations was found. This allows to derive an upper limit on the mixing strength between the heavy neutrino and the tau neutrino in the \nus mass range from 10 to 190 MeV\rm MeV. Windows between the SN1987a and Big Bang Nucleosynthesis lower limits and our result are still open for future experimental searches. The results obtained are used to constrain an interpretation of the time anomaly observed in the KARMEN1 detector.\Comment: 20 pages, 7 figures, a few comments adde
    corecore