75 research outputs found

    Modelling the life cycle of Salpa thompsoni

    Get PDF
    Salpa thompsoni is an important grazer in the Southern Ocean. It is found from the Subtropical Convergence southward to the coastal Antarctic Seas but being most abundant in the Antarctic Polar Frontal Zone. Low temperatures appear to negatively affect their development, limiting their ability to occur in the krill dominated high Antarctic ecosystems. Yet reports indicate that with ocean warming S. thompsoni have experienced a southward shift in their distribution. As they are efficient filter feeders, this shift can result in large-scale changes in the Southern Ocean ecosystem by increasing competitive or predatory interactions with Antarctic krill. To explore salp bloom dynamics in the Southern Ocean a size-structured S. thompsoni population model was developed with growth, consumption, reproduction and mortality rates dependent on temperature and chlorophyll a conditions. The largest uncertainties in S. thompsoni population ecology are individual and population growth rates, with a recent study identifying the possibility that the life cycle could be much shorter than previously considered. Here we run a suite of hypothesis scenarios under various environmental conditions to determine the most appropriate growth rate. Temperature and chlorophyll a were sufficient drivers to recreate seasonal and interannual dynamics of salp populations at two locations. The most suitable growth model suggests that mean S. thompsoni growth rates are likely to be ∌1mm body length d−1, 2-fold higher than previous calculations. S. thompsoni biomass was dependent on bud release time, with larger biomass years corresponding to bud release occurring during favorable environmental conditions; increasing the survival and growth of blastozooids and resulting in higher embryo release. This model confirms that it is necessary for growth and reproductive rates to be flexible in order for the salp population to adapt to varying environmental conditions and provides a framework that can examine how future salp populations might respond to climate change

    The impact of salps (Salpa thompsoni) on the Antarctic krill population (Euphausia superba): an individual-based modelling study

    Get PDF
    Krill (Euphausia superba) and salps (Salpa thompsoni) are key macrozooplankton grazers in the Southern Ocean ecosystem. However, due to differing habitat requirements, both species previously exhibited little spatial overlap. With ongoing climate change-induced seawater temperature increase and regional sea ice loss, salps can now extend their spatial distribution into historically krill-dominated areas and increase rapidly due to asexual reproduction when environmental conditions are favorable. Understanding the potential effects on krill is crucial, since krill is a species of exceptional trophic significance in the Southern Ocean food web. Negative impacts on krill could trigger cascading effects on its predators and prey. To address this question, we combined two individual-based models on salps and krill, which describe the whole life cycle of salp individuals and the dynamic energy budget of individual krill. The resulting new model PEKRIS (PErformance of KRIll vs. Salps) simulates a krill population for 100 years under varying chlorophyll-a concentrations in the presence or absence of salps. All of the investigated krill population properties (abundance, mean length, and yearly egg production) were significantly impacted by the presence of salps. On the other hand, salp density was not impacted if krill were present. The medians of krill population properties deviated during variable maximum chlorophyll-a density per year when salps were introduced by − 99.9% (− 234 individuals per 1000 m3) for krill density, − 100% (− 22,062 eggs per 1000 m3) for krill eggs and − 0.9% (− 0.3 mm) for mean length of krill. If both species compete for the same food resource in a closed space, salps seem to inhibit krill populations. Further simulation studies should investigate whether this effect prevails if different phytoplankton sizes and consumption preferences of krill are implemented. Furthermore, direct predation of the two species or consumption of krill fecal pellets by salps could change the impact size of the food competition

    Blooms of a key grazer in the Southern Ocean – An individual-based model of Salpa thompsoni

    Get PDF
    The Southern Ocean near the Western Antarctic Peninsula (WAP) is strongly affected by climate change resulting in warmer air temperature, accompanied with reduced sea ice coverage, increased sea water temperature and potential changes in the abundances of two key grazer species Salpa thompsoni (salp) and Euphausia superba (Antarctic krill). While salp abundance is hypothesized to increase, krill abundance is hypothesized to decline with dramatic consequences for the entire food web of the Southern Ocean. A better understanding of the biotic interaction between krill and salps and their population dynamics is thus crucial. However, the life cycle of salps is complicated and barely understood. Therefore, we have developed an individual-based model describing the whole life cycle to better understand the population dynamics of salps and the conditions for blooms. The model has been used to explore if and under what conditions the empirical pattern of large variability in observed salp abundances at the WAP, generated by the long-term data of the US Antarctic Marine Living Resources Program (AMLR) can emerge from a small seeding population. The model reproduced this empirical pattern if daily growth rates of oozoids were higher than previously reported for the WAP (mean growth rate for oozoids ~ 1 mm d−1) and if growth rates of blastozooids were lower (mean growth rate ~ 0.2 mm d−1). The model suggests that a prerequisite for local salp blooms requires a small founding population in early spring. With climate change it has been suggested that more frequent and earlier transport of salps into the WAP or winter survival will occur. Hence, the risk of salp blooms in the WAP is likely to substantially increase. These findings highlight the importance for an improved quantitative understanding of how primary production and the southward advection of salps will be impacted by climate change

    Agent-Based Modelling of Social-Ecological Systems: Achievements, Challenges, and a Way Forward

    Get PDF
    Abstract: Understanding social-ecological systems (SES) is crucial to supporting the sustainable management of resources. Agent-based modelling is a valuable tool to achieve this because it can represent the behaviour and interactions of organisms, human actors and institutions. Agent-based models (ABMs) have therefore already been widely used to study SES. However, ABMs of SES are by their very nature complex. They are therefore di icult to parameterize and analyse, which can limit their usefulness. It is time to critically reflect upon the current state-of-the-art to evaluate to what degree the potential of agent-based modelling for gaining general insights and supporting specific decision-making has already been utilized. We reviewed achievements and challenges by building upon developments in good modelling practice in the field of ecological modelling with its longer history. As a reference, we used the TRACE framework, which encompasses elements of model development, testing and analysis. We firstly reviewed achievements and challenges with regard to the elements of the TRACE framework addressed in reviews and method papers of social-ecological ABMs. Secondly, in a mini-review, we evaluated whether and to what degree the elements of the TRACE framework were addressed in publications on specific ABMs. We identified substantial gaps with regard to ( ) communicating whether the models represented real systems well enough for their intended purpose and ( ) analysing the models in a systematic and transparent way so that model output is not only observed but also understood. To fill these gaps, a joint e ort of the modelling community is needed to foster the advancement and use of strategies such as participatory approaches, standard protocols for communication, sharing of source code, and tools and strategies for model design and analysis. Throughout our analyses, we provide specific recommendations and references for improving the state-of-the-art. We thereby hope to contribute to the establishment of a new advanced culture of agent-based modelling of SES that will allow us to better develop general theory and practical solutions

    High‐Pressure Sintering of Rhombohedral Cr2S3 Using TZM Tools

    Get PDF
    The influence of sintering parameters on the physical properties and the chemical structure of rhombohedral Cr2S3 (rh‐Cr2S3) is investigated using high pressures and high temperatures. The densification of the powder is performed by applying the high‐pressure field‐assisted sintering technique/spark plasma sintering. Using a titanium–zirconium–molybdenum (TZM) alloy as sintering tool, it is possible to increase the magnitude of the applied pressure to several hundred MPa at temperatures as high as 1223 K. A relative density of up to 99.9% is achieved at a sintering temperature of 1223 K and a pressure of 395 MPa. The presence of phase‐pure rh‐Cr2S3 is proven by X‐ray diffraction analysis and transmission electron microscopy. The Seebeck coefficients of the self‐doped samples change drastically with the sintering temperatures ranging between −650 and −350 ΌV K−1. The densities and the thermal conductivities of the sintered samples increase with increasing sintering temperatures. The electrical conductivity is largely increased compared with the thermal conductivity potentially due to the current‐assisted high‐pressure sinterin

    Resilience trinity: safeguarding ecosystem functioning and services across three different time horizons and decision contexts

    Get PDF
    Ensuring ecosystem resilience is an intuitive approach to safeguard the functioning of ecosystems and hence the future provisioning of ecosystem services (ES). However, resilience is a multi-faceted concept that is difficult to operationalize. Focusing on resilience mechanisms, such as diversity, network architectures or adaptive capacity, has recently been suggested as means to operationalize resilience. Still, the focus on mechanisms is not specific enough. We suggest a conceptual framework, resilience trinity, to facilitate management based on resilience mechanisms in three distinctive decision contexts and time-horizons: i) reactive, when there is an imminent threat to ES resilience and a high pressure to act, ii) adjustive, when the threat is known in general but there is still time to adapt management, and iii) provident, when time horizons are very long and the nature of the threats is uncertain, leading to a low willingness to act. Resilience has different interpretations and implications at these different time horizons, which also prevail in different disciplines. Social ecology, ecology, and engineering are often implicitly focussing on provident, adjustive, or reactive resilience, respectively, but these different notions and of resilience and their corresponding social, ecological, and economic trade-offs need to be reconciled. Otherwise, we keep risking unintended consequences of reactive actions, or shying away from provident action because of uncertainties that cannot be reduced. The suggested trinity of time horizons and their decision contexts could help ensuring that longer-term management actions are not missed while urgent threats to ES are given priority

    Rarity of monodominance in hyperdiverse Amazonian forests.

    Get PDF
    Tropical forests are known for their high diversity. Yet, forest patches do occur in the tropics where a single tree species is dominant. Such "monodominant" forests are known from all of the main tropical regions. For Amazonia, we sampled the occurrence of monodominance in a massive, basin-wide database of forest-inventory plots from the Amazon Tree Diversity Network (ATDN). Utilizing a simple defining metric of at least half of the trees ≄ 10 cm diameter belonging to one species, we found only a few occurrences of monodominance in Amazonia, and the phenomenon was not significantly linked to previously hypothesized life history traits such wood density, seed mass, ectomycorrhizal associations, or Rhizobium nodulation. In our analysis, coppicing (the formation of sprouts at the base of the tree or on roots) was the only trait significantly linked to monodominance. While at specific locales coppicing or ectomycorrhizal associations may confer a considerable advantage to a tree species and lead to its monodominance, very few species have these traits. Mining of the ATDN dataset suggests that monodominance is quite rare in Amazonia, and may be linked primarily to edaphic factors

    Holocene Monsoon variability in East Africa: a marine perspective

    Get PDF
    The processes that control past monsoon variability in the East African Tropics during the Holocene are poorly understood. Especially the role of Sea Surface Temperatures (SST) controlling East African Rainfall on millennial timescales, as it is observed on decadal timescales, is currently intensely debated. In addition, it has been suggested recently that the longitudinal migration of the Congo Air Boundary (CAB) modulates East African precipitation on a regional scale as well [Tierney et al., 2011]. Here, we present a high-resolution marine sediment record for the past 12 kyrs from offshore Tanzania, close to the Rufiji River delta, to contribute to the current debate from a marine point of view. We reconstructed past SST and !18Oseawater, derived from planktic foraminiferal Mg/Ca and !18O, and past Sea Surface Salinity (SSS) variations, derived from planktic foraminiferal Ba/Ca-ratios. In the vicinity of river deltas, Ba/Ca-ratios have potential to record precipitation changes in the rivers’ catchment area. Our records show that East African precipitation, derived from Ba/Ca-ratios, roughly varies in concert with Indian Ocean SST, suggesting higher Indian Ocean SST to be an important prerequisite for stronger precipitation, and hence an intense monsoon episode in East Africa. We calculated the difference ("SST) between our record of Indian Ocean SST and SST of the tropical Atlantic [Weldeab et al., 2005], showing that "SST variability resembles the isotopic pattern of the Kilimanjaro ice core record [Thompson et al., 2002]. We suggest this to be the consequence of a longitudinal movement of the CAB over the African Continent, changing the trajectory of Indian Ocean moisture into the continent and therefore affecting the !18O of the East African rainout
    • 

    corecore