17 research outputs found

    The impact of low-frequency and rare variants on lipid levels

    No full text
    Using a genome-wide screen of 9.6 million genetic variants achieved through 1000 Genomes Project imputation in 62,166 samples, we identify association to lipid traits in 93 loci, including 79 previously identified loci with new lead SNPs and 10 new loci, 15 loci with a low-frequency lead SNP and 10 loci with a missense lead SNP, and 2 loci with an accumulation of rare variants. In six loci, SNPs with established function in lipid genetics (CELSR2, GCKR, LIPC and APOE) or candidate missense mutations with predicted damaging function (CD300LG and TM6SF2) explained the locus associations. The low-frequency variants increased the proportion of variance explained, particularly for low-density lipoprotein cholesterol and total cholesterol. Altogether, our results highlight the impact of low-frequency variants in complex traits and show that imputation offers a cost-effective alternative to resequencing

    Cell Specific eQTL Analysis without Sorting Cells

    Get PDF
    The functional consequences of trait associated SNPs are often investigated using expression quantitative trait locus (eQTL) mapping. While trait-associated variants may operate in a cell-type specific manner, eQTL datasets for such cell-types may not always be available. We performed a genome-environment interaction (GxE) meta-analysis on data from 5,683 samples to infer the cell type specificity of whole blood cis-eQTLs. We demonstrate that this method is able to predict neutrophil and lymphocyte specific cis-eQTLs and replicate these predictions in independent cell-type specific datasets. Finally, we show that SNPs associated with Crohn’s disease preferentially affect gene expression within neutrophils, including the archetypal NOD2 locus

    The trans-ancestral genomic architecture of glycemic traits

    Get PDF
    Glycemic traits are used to diagnose and monitor type 2 diabetes and cardiometabolic health. To date, most genetic studies of glycemic traits have focused on individuals of European ancestry. Here we aggregated genome-wide association studies comprising up to 281,416 individuals without diabetes (30% non-European ancestry) for whom fasting glucose, 2-h glucose after an oral glucose challenge, glycated hemoglobin and fasting insulin data were available. Trans-ancestry and single-ancestry meta-analyses identified 242 loci (99 novel; P < 5 x 10(-8)), 80% of which had no significant evidence of between-ancestry heterogeneity. Analyses restricted to individuals of European ancestry with equivalent sample size would have led to 24 fewer new loci. Compared with single-ancestry analyses, equivalent-sized trans-ancestry fine-mapping reduced the number of estimated variants in 99% credible sets by a median of 37.5%. Genomic-feature, gene-expression and gene-set analyses revealed distinct biological signatures for each trait, highlighting different underlying biological pathways. Our results increase our understanding of diabetes pathophysiology by using trans-ancestry studies for improved power and resolution.A trans-ancestry meta-analysis of GWAS of glycemic traits in up to 281,416 individuals identifies 99 novel loci, of which one quarter was found due to the multi-ancestry approach, which also improves fine-mapping of credible variant sets.Diabetes mellitus: pathophysiological changes and therap

    The Influence of Age and Sex on Genetic Associations with Adult Body Size and Shape : A Large-Scale Genome-Wide Interaction Study

    Get PDF
    Genome-wide association studies (GWAS) have identified more than 100 genetic variants contributing to BMI, a measure of body size, or waist-to-hip ratio (adjusted for BMI, WHRadjBMI), a measure of body shape. Body size and shape change as people grow older and these changes differ substantially between men and women. To systematically screen for age-and/or sex-specific effects of genetic variants on BMI and WHRadjBMI, we performed meta-analyses of 114 studies (up to 320,485 individuals of European descent) with genome-wide chip and/or Metabochip data by the Genetic Investigation of Anthropometric Traits (GIANT) Consortium. Each study tested the association of up to similar to 2.8M SNPs with BMI and WHRadjBMI in four strata (men 50y, women 50y) and summary statistics were combined in stratum-specific meta-analyses. We then screened for variants that showed age-specific effects (G x AGE), sex-specific effects (G x SEX) or age-specific effects that differed between men and women (G x AGE x SEX). For BMI, we identified 15 loci (11 previously established for main effects, four novel) that showed significant (FDR= 50y). No sex-dependent effects were identified for BMI. For WHRadjBMI, we identified 44 loci (27 previously established for main effects, 17 novel) with sex-specific effects, of which 28 showed larger effects in women than in men, five showed larger effects in men than in women, and 11 showed opposite effects between sexes. No age-dependent effects were identified for WHRadjBMI. This is the first genome-wide interaction meta-analysis to report convincing evidence of age-dependent genetic effects on BMI. In addition, we confirm the sex-specificity of genetic effects on WHRadjBMI. These results may providefurther insights into the biology that underlies weight change with age or the sexually dimorphism of body shape.Peer reviewe

    Association of common variants identified by recent genome-wide association studies with obesity in Chinese children: A case-control study.

    No full text
    Background: Large-scale genome-wide association studies have identified multiple genetic variants that are associated with elevated body mass index (BMI) or the risk of obesity in Caucasian or Asian populations. We examined whether these variants are individually associated with obesity in Chinese children, and also assessed their cumulative effects and predictive value for obesity risk in Chinese children. Methods: We genotyped 40 single nucleotide polymorphisms (SNPs) and conducted association analyses for 32/40 SNPs with an estimated minor allele frequency &gt;1 % in 2 030 unrelated Chinese children, including 607 normal-weight, 718 overweight, and 705 obese individuals from two cross-sectional study groups. Logistic regression and linear regression under the additive model were used to examine associations, and the area under the receiver operating characteristic curve (AUCROC) was reported as prediction summary. Results: We identified obesity association for 6 SNPs near SEC16B, RBJ, CDKAL1, TFAP2B, MAP2K5 and FTO (odds ratios (ORs) ranged from 1.19 to 1.41, nominal two-sided P-values &lt; 0.05). Association (Bonferroni corrected) of rs543874 near SEC16B and rs2241423 near MAP2K5 had presumably stronger effects on obesity in Chinese children than in Caucasian populations. Their risk alleles were also associated with BMI standard deviation score (BMI-SDS) variability. We demonstrated the cumulative effects of the 32 SNPs on obesity risk (per risk allele: OR = 1.06, 95 % CI: 1.03-1.11, P = 4.84 &times; 10-4) and BMI-SDS (&beta; = 0.04, 95 % CI: 0.02-0.06, P = 3.69 &times; 10-7). The difference in AUCROC for a model with covariates (age, age square, sex and study group) and the model including covariates and all 32 SNPs was 2.8 % (P = 0.0002). Conclusion: While six SNPs were individually associated with obesity in Chinese children, the 32 common variants identified by recent GWA studies had cumulative effects and resulted in a limited increase in the AUCROC predictive value for childhood obesity

    Fine mapping of a GWAS-derived obesity candidate region on chromosome 16p11.2.

    No full text
    INTRODUCTION: Large-scale genome-wide association studies (GWASs) have identified 97 chromosomal loci associated with increased body mass index in population-based studies on adults. One of these SNPs, rs7359397, tags a large region (approx. 1MB) with high linkage disequilibrium (r&sup2;&gt;0.7), which comprises five genes (SH2B1, APOBR, sulfotransferases: SULT1A1 and SULT1A2, TUFM). We had previously described a rare mutation in SH2B1 solely identified in extremely obese individuals but not in lean controls. METHODS: The coding regions of the genes APOBR, SULT1A1, SULT1A2, and TUFM were screened for mutations (dHPLC, SSCP, Sanger re-sequencing) in 95 extremely obese children and adolescents. Detected non-synonymous variants were genotyped (TaqMan SNP Genotyping, MALDI TOF, PCR-RFLP) in independent large study groups (up to 3,210 extremely obese/overweight cases, 485 lean controls and 615 obesity trios). In silico tools were used for the prediction of potential functional effects of detected variants. RESULTS: Except for TUFM we detected non-synonymous variants in all screened genes. Two polymorphisms rs180743 (APOBR p.Pro428Ala) and rs3833080 (APOBR p.Gly369_Asp370del9) showed nominal association to (extreme) obesity (uncorrected p = 0.003 and p = 0.002, respectively). In silico analyses predicted a functional implication for rs180743 (APOBR p.Pro428Ala). Both APOBR variants are located in the repetitive region with unknown function. CONCLUSION: Variants in APOBR contributed as strongly as variants in SH2B1 to the association with extreme obesity in the chromosomal region chr16p11.2. In silico analyses implied no functional effect of several of the detected variants. Further in vitro or in vivo analyses on the functional implications of the obesity associated variants are warranted

    Do common variants separate between obese melanocortin-4 receptor gene mutation carriers and non-carriers? The impact of cryptic relatedness.

    No full text
    BACKGROUND/AIMS: Genome-wide association studies revealed associations of single nucleotide polymorphisms (SNPs) flanking MC4R with body mass index variability and obesity. We genotyped 28 SNPs, covering MC4R, and searched for haplotypes discriminating between obese mutation carriers and non-carriers. METHODS: We analyzed all three-marker haplotype combinations of the 28 SNPs to discriminate between obese mutation carriers and non-carriers - overall and in functional categories for 25 different MC4R mutations: (a) &#39;like wild type&#39;, (b) &#39;partial loss of function&#39;, and (c) &#39;complete loss of function&#39;. We checked for the possible impact of &#39;cryptic relatedness&#39; by sensitivity analyses including only 1 randomly selected patient per mutation. RESULTS: Overall analyses revealed a haplotype of 3 SNPs downstream of the MC4R discriminating between obese mutation carriers and obese non-carriers. However, sensitivity analyses showed that the finding is most likely due to cryptic relatedness. CONCLUSION: Given a mutation prevalence of 1-5%, the sample size of 62 obese mutation carriers with overall 25 different MC4R mutations represents a unique feature of our study. Taking MC4R as an example, we demonstrate the impact of cryptic relatedness when trying to link non-coding SNPs to functionally relevant mutations. Hence, a thorough mutation screen can currently not be guided by SNP genotyping

    Bayesian inference analyses of the polygenic architecture of rheumatoid arthritis.

    No full text
    The genetic architectures of common, complex diseases are largely uncharacterized. We modeled the genetic architecture underlying genome-wide association study (GWAS) data for rheumatoid arthritis and developed a new method using polygenic risk-score analyses to infer the total liability-scale variance explained by associated GWAS SNPs. Using this method, we estimated that, together, thousands of SNPs from rheumatoid arthritis GWAS explain an additional 20% of disease risk (excluding known associated loci). We further tested this method on datasets for three additional diseases and obtained comparable estimates for celiac disease (43% excluding the major histocompatibility complex), myocardial infarction and coronary artery disease (48%) and type 2 diabetes (49%). Our results are consistent with simulated genetic models in which hundreds of associated loci harbor common causal variants and a smaller number of loci harbor multiple rare causal variants. These analyses suggest that GWAS will continue to be highly productive for the discovery of additional susceptibility loci for common diseases

    Mapping the genetic architecture of gene regulation in whole blood.

    Get PDF
    BACKGROUND: We aimed to assess whether whole blood expression quantitative trait loci (eQTLs) with effects in cis and trans are robust and can be used to identify regulatory pathways affecting disease susceptibility. MATERIALS AND METHODS: We performed whole-genome eQTL analyses in 890 participants of the KORA F4 study and in two independent replication samples (SHIP-TREND, N = 976 and EGCUT, N = 842) using linear regression models and Bonferroni correction. RESULTS: In the KORA F4 study, 4,116 cis-eQTLs (defined as SNP-probe pairs where the SNP is located within a 500 kb window around the transcription unit) and 94 trans-eQTLs reached genome-wide significance and overall 91% (92% of cis-, 84% of trans-eQTLs) were confirmed in at least one of the two replication studies. Different study designs including distinct laboratory reagents (PAXgene&trade; vs. Tempus&trade; tubes) did not affect reproducibility (separate overall replication overlap: 78% and 82%). Immune response pathways were enriched in cis- and trans-eQTLs and significant cis-eQTLs were partly coexistent in other tissues (cross-tissue similarity 40-70%). Furthermore, four chromosomal regions displayed simultaneous impact on multiple gene expression levels in trans, and 746 eQTL-SNPs have been previously reported to have clinical relevance. We demonstrated cross-associations between eQTL-SNPs, gene expression levels in trans, and clinical phenotypes as well as a link between eQTLs and human metabolic traits via modification of gene regulation in cis. CONCLUSIONS: Our data suggest that whole blood is a robust tissue for eQTL analysis and may be used both for biomarker studies and to enhance our understanding of molecular mechanisms underlying gene-disease associations
    corecore