2,072 research outputs found

    The Rights and Remedies of Abutting Owners in Streets, with Special Reference to Elevated Railroads

    Get PDF
    Thesis for the degree of Bachelor of Laws

    The desolation of Smaug : the human-driven decline of the Sungazer lizard (Smaug giganteus)

    Get PDF
    The Sungazer (Smaug giganteus) is a threatened lizard species endemic to the Highveld grasslands of South Africa. The species faces risks from habitat loss and fragmentation, and illegal harvesting for traditional medicine and the pet trade. Despite these threats, the current conservation status of the species was poorly validated. We visited 79 Sungazer populations recorded in 1978 to assess population change since the initial surveys, and surveyed an additional 164 sites to better define the distribution and estimate the current population size. We interrogated all known historical trade data of the species. One-third of Sungazer populations have been extirpated over the past 37 years. The distribution includes two allopatric populations, with the smaller Mpumalanga population experiencing a significantly higher decline. The species has an extent of occurrence (EOO) of 34 500 km2, and an area of occupancy (AOO) of 1149 km2. The interpreted distribution is 17 978 km2, and just under 60% remains untransformed grassland. We estimate a population size of 677 000 mature individuals, down 48% from the estimated historical population, prior to commercial agricultural development. A total of 1194 live Sungazers were exported under permit from South Africa between 1985 and 2014, with a significant increase in numbers exported over the last decade. Without any evidence of captive breeding, we believe that these animals are all wild-caught. Based on the AOO, level of decline, fragmentation within the distribution and suspected level of exploitation, we recommend classification of the species as Vulnerable under IUCN Red List Criteria A2acd and B2ab(ii–v). The establishment of a protected area network, genetic research and further investigations into the pet and traditional medicine trades are urgently needed.The Rufford Foundation (grant number 10843-1), SANBI’s Threatened Species Programme, National Research Foundation, Endangered Wildlife Trust, University of the Witwatersrand, The Alexander Herp Lab and Tshwane University of Technology provided funding, equipment and vehicles to S.P. for this project.http://www.elsevier.de/jnc2018-04-30Genetic

    Multidisciplinary Ophthalmic Imaging Progressive Loss of Retinal Ganglion Cells and Axons in Nonoptic Neuritis Eyes in Multiple Sclerosis: A Longitudinal Optical Coherence Tomography Study

    Get PDF
    Citation: Graham EC, You Y, Yiannikas C, et al. Progressive loss of retinal ganglion cells and axons in non-optic neuritis eyes in multiple sclerosis: a longitudinal optical coherence tomography study. Invest Ophthalmol Vis Sci. 2016;57:231157: -231757: . DOI:10.1167 PURPOSE. To examine the rate of retinal ganglion cell (RGC) layer and retinal nerve fiber layer (RNFL) changes in nonoptic neuritis (NON) eyes of relapsing remitting multiple sclerosis (RRMS) patients, and to find a specific imaging parameter useful for identifying disease progression. METHODS. Forty-five consecutive RRMS patients and 20 age-and sex-matched healthy subjects were enrolled. All patients were followed up for 3 years with annual optical coherence tomography (OCT) scans, which included a peripapillary ring scan protocol for RNFL analysis and a macular radial star-like scan to obtain RGC/inner plexiform layer (IPL) thickness measures. Healthy controls were scanned twice, 3 years apart. RESULTS. Retinal ganglion cell/inner plexiform layer and temporal RNFL (tRNFL) demonstrated highly significant thinning (P < 0.01), but all nasal segments and global RNFL (gRNFL) were not significantly different from normal controls. While receiver operating characteristics (ROC) analysis showed no advantage of RGC/IPL over tRNFL in cross-sectional detection of thinning, cut-off point based of fifth percentile in healthy controls demonstrated higher rate of abnormality for RGC/IPL. There was a significant progressive loss of RGC/IPL and tRNFL during the follow-up period. The largest thickness reduction was observed in tRNFL. ROC analysis demonstrated that tRNFL provided better sensitivity/specificity for detecting change over time than RGC/IPL (area under the curve [AUC] 0.78 vs. 0.52), which was confirmed by higher detection rate when 95 th percentile of progression in healthy controls was used as a cut-off. CONCLUSIONS. This study confirmed significant thinning of RGC/IPL and tRNFL in NON eyes of RRMS patients. Progressive losses were more apparent on tRNFL, while RGC/IPL showed less change over the follow-up period

    Debris Disks: Seeing Dust, Thinking of Planetesimals and Planets

    Full text link
    Debris disks are optically thin, almost gas-free dusty disks observed around a significant fraction of main-sequence stars older than about 10 Myr. Since the circumstellar dust is short-lived, the very existence of these disks is considered as evidence that dust-producing planetesimals are still present in mature systems, in which planets have formed - or failed to form - a long time ago. It is inferred that these planetesimals orbit their host stars at asteroid to Kuiper-belt distances and continually supply fresh dust through mutual collisions. This review outlines observational techniques and results on debris disks, summarizes their essential physics and theoretical models, and then places them into the general context of planetary systems, uncovering interrelations between the disks, dust parent bodies, and planets. It is shown that debris disks can serve as tracers of planetesimals and planets and shed light on the planetesimal and planet formation processes that operated in these systems in the past.Comment: Review paper, accepted for publication in "Research in Astronomy and Astrophysics

    Circumstellar disks and planets. Science cases for next-generation optical/infrared long-baseline interferometers

    Full text link
    We present a review of the interplay between the evolution of circumstellar disks and the formation of planets, both from the perspective of theoretical models and dedicated observations. Based on this, we identify and discuss fundamental questions concerning the formation and evolution of circumstellar disks and planets which can be addressed in the near future with optical and infrared long-baseline interferometers. Furthermore, the importance of complementary observations with long-baseline (sub)millimeter interferometers and high-sensitivity infrared observatories is outlined.Comment: 83 pages; Accepted for publication in "Astronomy and Astrophysics Review"; The final publication is available at http://www.springerlink.co

    Dark sectors 2016 Workshop: community report

    Get PDF
    This report, based on the Dark Sectors workshop at SLAC in April 2016, summarizes the scientific importance of searches for dark sector dark matter and forces at masses beneath the weak-scale, the status of this broad international field, the important milestones motivating future exploration, and promising experimental opportunities to reach these milestones over the next 5-10 years

    LSST: from Science Drivers to Reference Design and Anticipated Data Products

    Get PDF
    (Abridged) We describe here the most ambitious survey currently planned in the optical, the Large Synoptic Survey Telescope (LSST). A vast array of science will be enabled by a single wide-deep-fast sky survey, and LSST will have unique survey capability in the faint time domain. The LSST design is driven by four main science themes: probing dark energy and dark matter, taking an inventory of the Solar System, exploring the transient optical sky, and mapping the Milky Way. LSST will be a wide-field ground-based system sited at Cerro Pach\'{o}n in northern Chile. The telescope will have an 8.4 m (6.5 m effective) primary mirror, a 9.6 deg2^2 field of view, and a 3.2 Gigapixel camera. The standard observing sequence will consist of pairs of 15-second exposures in a given field, with two such visits in each pointing in a given night. With these repeats, the LSST system is capable of imaging about 10,000 square degrees of sky in a single filter in three nights. The typical 5σ\sigma point-source depth in a single visit in rr will be 24.5\sim 24.5 (AB). The project is in the construction phase and will begin regular survey operations by 2022. The survey area will be contained within 30,000 deg2^2 with δ<+34.5\delta<+34.5^\circ, and will be imaged multiple times in six bands, ugrizyugrizy, covering the wavelength range 320--1050 nm. About 90\% of the observing time will be devoted to a deep-wide-fast survey mode which will uniformly observe a 18,000 deg2^2 region about 800 times (summed over all six bands) during the anticipated 10 years of operations, and yield a coadded map to r27.5r\sim27.5. The remaining 10\% of the observing time will be allocated to projects such as a Very Deep and Fast time domain survey. The goal is to make LSST data products, including a relational database of about 32 trillion observations of 40 billion objects, available to the public and scientists around the world.Comment: 57 pages, 32 color figures, version with high-resolution figures available from https://www.lsst.org/overvie

    Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

    Get PDF
    This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin

    Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images

    Get PDF
    Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumorinfiltrating lymphocytes (TILs) based on H&E images from 13 TCGA tumor types. These TIL maps are derived through computational staining using a convolutional neural network trained to classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and correlation with overall survival. TIL map structural patterns were grouped using standard histopathological parameters. These patterns are enriched in particular T cell subpopulations derived from molecular measures. TIL densities and spatial structure were differentially enriched among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for the TCGA image archives with insights into the tumor-immune microenvironment

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts
    corecore