432 research outputs found

    Slit2 prevents neutrophil recruitment and renal ischemia-reperfusion injury

    Get PDF
    Neutrophils recruited to the postischemic kidney contribute to the pathogenesis of ischemia-reperfusion injury (IRI), which is the most common cause of renal failure among hospitalized patients. The Slit family of secreted proteins inhibits chemotaxis of leukocytes by preventing activation of Rho-family GTPases, suggesting that members of this family might modulate the recruitment of neutrophils and the resulting IRI. Here, in static and microfluidic shear assays, Slit2 inhibited multiple steps required for the infiltration of neutrophils into tissue. Specifically, Slit2 blocked the capture and firm adhesion of human neutrophils to inflamed vascular endothelial barriers as well as their subsequent transmigration. To examine whether these observations were relevant to renal IRI, we administered Slit2 to mice before bilateral clamping of the renal pedicles. Assessed at 18 hours after reperfusion, Slit2 significantly inhibited renal tubular necrosis, neutrophil and macrophage infiltration, and rise in plasma creatinine. In vitro, Slit2 did not impair the protective functions of neutrophils, including phagocytosis and superoxide production, and did not inhibit neutrophils from killing the extracellular pathogen Staphylococcus aureus. In vivo, administration of Slit2 did not attenuate neutrophil recruitment or bacterial clearance in mice with ascending Escherichia coli urinary tract infections and did not increase the bacterial load in the livers of mice infected with the intracellular pathogen Listeriamonocytogenes. Collectively, these results suggest that Slit2 may hold promise as a strategy to combat renal IRI without compromising the protective innate immune response. Copyright © 2013 by the American Society of Nephrology

    Single Nucleotide Polymorphisms That Increase Expression of the Guanosine Triphosphatase RAC1 Are Associated With Ulcerative Colitis

    Get PDF
    BACKGROUND & AIMS: RAC1 is a GTPase that has an evolutionarily conserved role in coordinating immune defenses, from plants to mammals. Chronic inflammatory bowel diseases (IBD) are associated with dysregulation of immune defenses. We studied the role of RAC1 in IBD using human genetic and functional studies and animal models of colitis. METHODS: We used a candidate gene approach to HapMap-Tag single nucleotide polymorphisms (SNPs) in a discovery cohort; findings were confirmed in 2 additional cohorts. RAC1 mRNA expression was examined from peripheral blood cells of patients. Colitis was induced in mice with conditional disruption of Rac1 in phagocytes by administration of dextran sulphate sodium (DSS). RESULTS: We observed a genetic association between RAC1 with ulcerative colitis (UC) in a discovery cohort, 2 independent replication cohorts, and in combined analysis for the SNPs rs10951982 (Pcombined UC = 3.3 × 10–8, odds ratio [OR]=1.43 [1.26–1.63]) and rs4720672 (Pcombined UC=4.7 × 10–6, OR=1.36 [1.19–1.58]). Patients with IBD who had the rs10951982 risk allele had increased expression of RAC1, compared to those without this allele. Conditional disruption of Rac1 in macrophage and neutrophils of mice protected them against DSS-induced colitis. CONCLUSION: Studies of human tissue samples and knockout mice demonstrated a role for the GTPase RAC1 in the development of UC; increased expression of RAC1 was associated with susceptibility to colitis

    Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London

    Observation of BD()KKS0{B\to D^{(*)} K^- K^{0}_S} decays using the 2019-2022 Belle II data sample

    Full text link
    We present a measurement of the branching fractions of four B0,D()+,0KKS0B^{0,-}\to D^{(*)+,0} K^- K^{0}_S decay modes. The measurement is based on data from SuperKEKB electron-positron collisions at the Υ(4S)\Upsilon(4S) resonance collected with the Belle II detector and corresponding to an integrated luminosity of 362 fb1{362~\text{fb}^{-1}}. The event yields are extracted from fits to the distributions of the difference between expected and observed BB meson energy to separate signal and background, and are efficiency-corrected as a function of the invariant mass of the KKS0K^-K_S^0 system. We find the branching fractions to be: B(BD0KKS0)=(1.89±0.16±0.10)×104, \text{B}(B^-\to D^0K^-K_S^0)=(1.89\pm 0.16\pm 0.10)\times 10^{-4}, B(B0D+KKS0)=(0.85±0.11±0.05)×104, \text{B}(\overline B{}^0\to D^+K^-K_S^0)=(0.85\pm 0.11\pm 0.05)\times 10^{-4}, B(BD0KKS0)=(1.57±0.27±0.12)×104, \text{B}(B^-\to D^{*0}K^-K_S^0)=(1.57\pm 0.27\pm 0.12)\times 10^{-4}, B(B0D+KKS0)=(0.96±0.18±0.06)×104, \text{B}(\overline B{}^0\to D^{*+}K^-K_S^0)=(0.96\pm 0.18\pm 0.06)\times 10^{-4}, where the first uncertainty is statistical and the second systematic. These results include the first observation of B0D+KKS0\overline B{}^0\to D^+K^-K_S^0, BD0KKS0B^-\to D^{*0}K^-K_S^0, and B0D+KKS0\overline B{}^0\to D^{*+}K^-K_S^0 decays and a significant improvement in the precision of B(BD0KKS0)\text{B}(B^-\to D^0K^-K_S^0) compared to previous measurements

    Reconstruction of BρνB \to \rho \ell \nu_\ell decays identified using hadronic decays of the recoil BB meson in 2019 -- 2021 Belle II data

    Full text link
    We present results on the semileptonic decays B0ρ+νB^0 \to \rho^- \ell^+ \nu_\ell and B+ρ0+νB^+ \to \rho^0 \ell^+ \nu_\ell in a sample corresponding to 189.9/fb of Belle II data at the SuperKEKB ee+e^- e^+ collider. Signal decays are identified using full reconstruction of the recoil BB meson in hadronic final states. We determine the total branching fractions via fits to the distributions of the square of the "missing" mass in the event and the dipion mass in the signal candidate and find B(B0ρ+ν)=(4.12±0.64(stat)±1.16(syst))×104{\mathcal{B}(B^0\to\rho^-\ell^+ \nu_\ell) = (4.12 \pm 0.64(\mathrm{stat}) \pm 1.16(\mathrm{syst})) \times 10^{-4}} and B(B+ρ0+ν)=(1.77±0.23(stat)±0.36(syst))×104{\mathcal{B}({B^+\to\rho^0\ell^+\nu_\ell}) = (1.77 \pm 0.23 (\mathrm{stat}) \pm 0.36 (\mathrm{syst})) \times 10^{-4}} where the dominant systematic uncertainty comes from modeling the nonresonant B(ππ)+νB\to (\pi\pi)\ell^+\nu_\ell contribution

    Angular analysis of B+ρ+ρ0B^+ \to \rho^+\rho^0 decays reconstructed in 2019, 2020, and 2021 Belle II data

    Full text link
    We report on a Belle II measurement of the branching fraction (B\mathcal{B}), longitudinal polarization fraction (fLf_L), and CP asymmetry (ACP\mathcal{A}_{CP}) of B+ρ+ρ0B^+\to \rho^+\rho^0 decays. We reconstruct B+ρ+(π+π0(γγ))ρ0(π+π)B^+\to \rho^+(\to \pi^+\pi^0(\to \gamma\gamma))\rho^0(\to \pi^+\pi^-) decays in a sample of SuperKEKB electron-positron collisions collected by the Belle II experiment in 2019, 2020, and 2021 at the Υ\Upsilon(4S) resonance and corresponding to 190 fb1^{-1} of integrated luminosity. We fit the distributions of the difference between expected and observed BB candidate energy, continuum-suppression discriminant, dipion masses, and decay angles of the selected samples, to determine a signal yield of 345±31345 \pm 31 events. The signal yields are corrected for efficiencies determined from simulation and control data samples to obtain $\mathcal{B}(B^+ \to \rho^+\rho^0) = [23.2^{+\ 2.2}_{-\ 2.1} (\rm stat) \pm 2.7 (\rm syst)]\times 10^{-6},, f_L = 0.943 ^{+\ 0.035}_{-\ 0.033} (\rm stat)\pm 0.027(\rm syst),and, and \mathcal{A}_{CP}=-0.069 \pm 0.068(\rm stat) \pm 0.060 (\rm syst).Theresultsagreewithpreviousmeasurements.Thisisthefirstmeasurementof. The results agree with previous measurements. This is the first measurement of \mathcal{A}_{CP}in in B^+\to \rho^+\rho^0$ decays reported by Belle II

    Measurement of the branching fractions and CPCP asymmetries of B+π+π0B^+ \rightarrow \pi^+ \pi^0 and B+K+π0B^+ \rightarrow K^+ \pi^0 decays in 2019-2021 Belle II data

    Full text link
    We determine the branching fractions B{\mathcal{B}} and CPCP asymmetries ACP{\mathcal{A}_{{\it CP}}} of the decays B+π+π0B^+ \rightarrow \pi^+ \pi^0 and B+K+π0B^+ \rightarrow K^+ \pi^0. The results are based on a data set containing 198 million bottom-antibottom meson pairs corresponding to an integrated luminosity of 190  fb1190\;\text{fb}^{-1} recorded by the Belle II detector in energy-asymmetric electron-positron collisions at the Υ(4S)\Upsilon (4S) resonance. We measure B(B+π+π0)=(6.12±0.53±0.53)×106{\mathcal{B}(B^+ \rightarrow \pi^+ \pi^0) = (6.12 \pm 0.53 \pm 0.53)\times 10^{-6}}, B(B+K+π0)=(14.30±0.69±0.79)×106{\mathcal{B}(B^+ \rightarrow K^+ \pi^0) = (14.30 \pm 0.69 \pm 0.79)\times 10^{-6}}, ACP(B+π+π0)=0.085±0.085±0.019{\mathcal{A}_{{\it CP}}(B^+ \rightarrow \pi^+ \pi^0) = -0.085 \pm 0.085 \pm 0.019}, and ACP(B+K+π0)=0.014±0.047±0.010{\mathcal{A}_{{\it CP}}(B^+ \rightarrow K^+ \pi^0) = 0.014 \pm 0.047 \pm 0.010}, where the first uncertainties are statistical and the second are systematic. These results improve a previous Belle II measurement and agree with the world averages
    corecore