13 research outputs found
In situ visualization and dynamics of newly synthesized proteins in rat hippocampal neurons
Protein translation has been implicated in different forms of synaptic plasticity, but direct in situ visualization of new proteins is limited to one or two proteins at a time. Here we describe a metabolic labeling approach based on incorporation of noncanonical amino acids into proteins followed by chemoselective fluorescence tagging by means of 'click chemistry'. After a brief incubation with azidohomoalanine or homopropargylglycine, a robust fluorescent signal was detected in somata and dendrites. Pulse-chase application of azidohomoalanine and homopropargylglycine allowed visualization of proteins synthesized in two sequential time periods. This technique can be used to detect changes in protein synthesis and to evaluate the fate of proteins synthesized in different cellular compartments. Moreover, using strain-promoted cycloaddition, we explored the dynamics of newly synthesized membrane proteins using single-particle tracking and quantum dots. The newly synthesized proteins showed a broad range of diffusive behaviors, as would be expected for a pool of labeled proteins that is heterogeneous
Sense and Senselessness; An Absurd Argument
Senior Project submitted to The Division of Social Studies of Bard College
Régulation de la diffusion latérale et du nombre de récepteurs GABA de type A aux synapses inhibitrices
Le nombre de rĂ©cepteurs aux neurotransmetteurs aux synapses est un paramĂštre dĂ©terminant de la transmission synaptique. Les rĂ©cepteurs entrent et sortent continuellement des synapses, mais peuvent aussi ĂȘtre stabilisĂ©s via leur interaction avec certaines molĂ©cules synaptiques. Dans le cerveau, la transmission inhibitrice rapide est majoritairement assurĂ©e par le rĂ©cepteur du GABA (RGABAA). L accumulation de RGABAA aux synapses dĂ©pend de la gĂ©phyrine, principale protĂ©ine de l Ă©chafaudage post-synaptique inhibiteur. Au cours de ma thĂšse je me suis intĂ©ressĂ©e aux mĂ©canismes qui rĂ©gulent la diffusion latĂ©rale et le nombre de RGABAA aux synapses. J ai d abord contribuĂ© au dĂ©veloppement de mĂ©thodes de marquage pour la technique de suivi de molĂ©cules uniques (SPT), qui permet d Ă©tudier les paramĂštres de diffusion des rĂ©cepteurs membranaires. En utilisant cette technique, j ai montrĂ© que la prĂ©sence d un site d interaction avec la gĂ©phyrine sur la sous-unitĂ© alpha1 du RGABAA modifiait la diffusion des RGABAA aux synapses, ce qui apporte une nouvelle preuve de l interaction dans les neurones vivants. J ai aussi Ă©tudiĂ© l influence de l activitĂ© du RGABAA sur son accumulation synaptique dans les neurones d hippocampe. J ai montrĂ© que l agoniste et l antagoniste du RGABAA avaient des actions opposĂ©es sur la diffusion ainsi que sur l accumulation du rĂ©cepteur aux synapses. Le diazĂ©pam, un modulateur positif du RGABAA, a un effet stabilisateur inattendu qui va Ă l encontre des effets induits par l agoniste. Cet effet sur le trafic de surface du RGABAA pourrait constituer un nouveau mĂ©canisme d action des benzodiazĂ©pines et expliquerait leur efficacitĂ© lors de leur utilisation cliniquePARIS-BIUSJ-Biologie recherche (751052107) / SudocSudocFranceF
High-Affinity Labeling and Tracking of Individual Histidine-Tagged Proteins in Live Cells Using Ni 2+ Tris-nitrilotriacetic Acid Quantum Dot Conjugates
International audienceInvestigation of many cellular processes using fluorescent quantum dots (QDs) is hindered by the nontrivial requirements for QD surface functionalization and targeting. To address these challenges, we designed, characterized and applied QDâtrisNTA, which integrates tris-nitrilotriacetic acid, a small and high-affinity recognition unit for the ubiquitous polyhistidine protein tag. Using QDâtrisNTA, we demonstrate two-color QD tracking of the type-1 interferon receptor subunits in live cells, potentially enabling direct visualization of proteinâprotein interactions at the single molecule level
The residence time of GABA(A)Rs at inhibitory synapses is determined by direct binding of the receptor α1 subunit to gephyrin
The majority of fast synaptic inhibition in the brain is mediated by benzodiazepine-sensitive, α1 subunit-containing GABA(A)Rs; however, our knowledge of the mechanisms neurons use to regulate their synaptic accumulation is rudimentary. Using immunoprecipitation we demonstrate that GABA(A)Rs and gephyrin are intimately associated at inhibitory synapses in cultured rat hippocampal neurons. In vitro we reveal that the E-domain of gephyrin directly binds to the α1 subunit with an affinity of ~20 ΌM, mediated by residues 360-375 within the intracellular domain of this receptor subunit. Mutating residues 360-375 decreases both the accumulation of α1-containing GABA(A)Rs at gephyrin-positive inhibitory synapses in hippocampal neurons and the amplitude of miniature inhibitory postsynaptic currents (mIPSCs). We also demonstrate that the affinity of gephyrin for the α1 subunit is modulated by Thr375, a putative phosphorylation site. Mutation of Thr375 to a phospho-mimetic, negatively charged amino acid decreases both the affinity of the α1 subunit for gephyrin, receptor accumulation at synapses and the amplitude of mIPSCs. Finally, single particle tracking reveals that gephyrin reduces the diffusion of α1 subunit-containing GABA(A)Rs specifically at inhibitory synapses, thereby increasing their confinement at these structures. Our results suggest that the direct binding of gephyrin to residues 360-375 of the α1 subunit and its modulation are likely to be important determinants for the stabilization of GABA(A)Rs at synaptic sites, thereby modulating the strength of synaptic inhibition