117 research outputs found

    Induction of Volatile Emissions in Maize by Different Larval Instars of Spodoptera littoralis

    Get PDF
    Maize plants under attack by caterpillars emit a specific blend of volatiles that is highly attractive to parasitic wasps. The release of these signals is induced by elicitors in the caterpillar regurgitant. Studies suggest that plants respond differently to different herbivore species and even to different herbivore stages, thus providing parasitoids and predators with specific signals. We tested if this is the case for different larval instars of the noctuid moth Spodoptera littoralis when they feed on maize plants. Cut maize plants were incubated in diluted regurgitant from second, third, or fifth instar caterpillars. There were no differences in total amount released after these treatments, but there were small differences in the release of the minor compounds phenethyl acetate and α-humulene. Regurgitant of all three instars contained the elicitor volicitin. To test the effect of actual feeding by the larvae, potted plants were infested with caterpillars of one of the three instars, and volatiles were collected the following day. The intensity of the emissions was correlated with the number of larvae feeding on a plant, and with the amount of damage inflicted, but was independent of the instar that caused the damage. We also used artificial damage to mimic the manner of feeding of each instar to test the importance of physical aspects of damages for the odor emission. The emission was highly variable, but no differences were found among the different types of damage. In olfactometer tests, Microplitis rufiventris, a parasitoid that can only successfully parasitize second and early third instar S. littoralis, did not differentiate among the odors of maize plants attacked by different instar larvae. The odor analyses as well as the parasitoid's responses indicate that maize odors induced by S. littoralis provide parasitoids with poor information on the larval developmental stage. We discuss the results in the context of variability and lack of specificity in odorous plant signal

    Antennal Electrophysiological Responses of Three Parasitic Wasps to Caterpillar-Induced Volatiles from Maize ( Zea mays mays ), Cotton ( Gossypium herbaceum ), and Cowpea ( Vigna unguiculata )

    Get PDF
    Many parasitic wasps are attracted to volatiles that are released by plants when attacked by potential hosts. The attractiveness of these semiochemicals from damaged plants has been demonstrated in many tritrophic systems, but the physiological mechanisms underlying the insect responses are poorly understood. We recorded the antennal perception by three parasitoids (Cotesia marginiventris, Microplitis rufiventris, and Campoletis sonorensis) to volatiles emitted by maize, cowpea, and cotton plants after attack by the common caterpillar pest Spodoptera littoralis. Gas chromatography-electroantennography (GC-EAG) recordings showed that wasps responded to many, but not all, of the compounds present at the physiologically relevant levels tested. Interestingly, some minor compounds, still unidentified, elicited strong responses from the wasps. These results indicate that wasps are able to detect many odorant compounds released by the plants. It remains to be determined how this information is processed and leads to the specific behavior of the parasitoid

    Larval performance and adult attraction of Delia platura (Diptera: Anthomyiidae) in a native and an introduced crop

    Get PDF
    Delia platura Meigen is an important pest in crops around the world. Its host range includes almost 50 species and it can develop in soil organic matter. In Ecuador, D. platura is a serious problem for the crop, Lupinus mutabilis Sweet (Chocho) and it also attacks broccoli (Brassica oleracea). After broccoli is harvested, crop residue is mixed with soil or collected and stored close to Chocho fields. The objectives of this study were to determine the adaptive responses of larvae reared on different hosts and whether D. platura females are preferentially attracted to germinating L. mutabilis seeds or broccoli residue. Accordingly, larval performance and attraction of female D. platura reared on broccoli residue and L. mutabilis seeds were evaluated. The number of larvae, pupae and adults were higher when reared on broccoli. Conversely, pupal weight was higher and time from larva to pupa, pupa to adult and total life cycle were longer in flies reared on L. mutabilis. Although D. platura developed more quickly on broccoli, L. mutabilis was also a good host since pupae were heavier compared with flies reared on broccoli. Delia platura females reared on broccoli preferred broccoli residue to L. mutabilis in an olfactometer. Volatiles from broccoli residue in soil may attract D. platura females and stimulate oviposition on L. mutabilis seeds. Environmentally benign production of L. mutabilis crops with minimal insecticide applications may require the elimination of fresh broccoli residue as fertilizer in soils where L. mutabilis is cultivated

    Differences in Volatile Profiles of Turnip Plants Subjected to Single and Dual Herbivory Above- and Belowground

    Get PDF
    Plants attacked by herbivorous insects emit volatile organic compounds that are used by natural enemies to locate their host or prey. The composition of the blend is often complex and specific. It may vary qualitatively and quantitatively according to plant and herbivore species, thus providing specific information for carnivorous arthropods. Most studies have focused on simple interactions that involve one species per trophic level, and typically have investigated the aboveground parts of plants. These investigations need to be extended to more complex networks that involve multiple herbivory above- and belowground. A previous study examined whether the presence of the leaf herbivore Pieris brassicae on turnip plants (Brassica rapa subsp. rapa) influences the response of Trybliographa rapae, a specialist parasitoid of the root feeder Delia radicum. It showed that the parasitoid was not attracted by volatiles emitted by plants under simultaneous attack. Here, we analyzed differences in the herbivore induced plant volatile (HIPV) mixtures that emanate from such infested plants by using Orthogonal Partial Least Squares-Discriminant Analysis (OPLS-DA). This multivariate model focuses on the differences between odor blends, and highlights the relative importance of each compound in an HIPV blend. Dual infestation resulted in several HIPVs that were present in both isolated infestation types. However, HIPVs collected from simultaneously infested plants were not the simple combination of volatiles from isolated forms of above- and belowground herbivory. Only a few specific compounds characterized the odor blend of each type of damaged plant. Indeed, some compounds were specifically induced by root herbivory (4-methyltridecane and salicylaldehyde) or shoot herbivory (methylsalicylate), whereas hexylacetate, a green leaf volatile, was specifically induced after dual herbivory. It remains to be determined whether or not these minor quantitative variations, within the background of more commonly induced odors, are involved in the reduced attraction of the root feeder’s parasitoid. The mechanisms involved in the specific modification of the odor blends emitted by dual infested turnip plants are discussed in the light of interferences between biosynthetic pathways linked to plant responses to shoot or root herbivory

    Net ecosystem fluxes and composition of biogenic volatile organic compounds over a maize field-interaction of meteorology and phenological stages

    Get PDF
    Bioenergy crop production is rapidly expanding in Europe, and the potential emissions of biogenic volatile organic compounds (BVOCs) might change the chemical composition of the atmosphere, influencing in turn air quality and regional climate. The environmental impacts of bioenergy crops on air chemistry are difficult to assess due to a lack of accurate field observations. Therefore, we studied BVOC fluxes from a bioenergy maize field in North-Eastern Germany throughout the entire reproductive growth stage of the plants. Combining automated large chambers and proton transfer reaction mass spectrometry (PTR-MS), we successfully measured fluxes of the highly reactive hydrocarbons monoterpenes (MTs) and sesquiterpenes (SQTs), together with several other BVOCs, including alcohols, aldehydes, ketones, benzenoids, and fatty acid derivatives. Emissions of MTs and SQTs were relatively high (17.0% and 3.6% of total mean molar BVOC emission, respectively) compared to methanol emissions (17.6%). Seasonal MT and SQT fluxes were clearly associated with the flowering phase, originating mainly from the flowering tissues as shown in additional laboratory experiments. From the observations of CO₂ net ecosystem exchange and evapotranspiration rates, we could exclude heat and drought stress-induced BVOC emissions. Standard emission factors calculated for all compounds, chemical groups, and growth stages, showed that the temperature dependency of volatile terpenoid fluxes decreased distinctively with proceeding development stage. The results indicate that emissions from large-scale bioenergy maize fields should be better differentiated and considered in regional estimates of aerosol formation. For the implementation of such relation into biogeochemical modelling, it should be considered that not only seasonal weather development but also phenological growth stages are determining the BVOC patterns and emission potentials

    Plants Attract Parasitic Wasps to Defend Themselves against Insect Pests by Releasing Hexenol

    Get PDF
    Plant volatiles play an important role in defending plants against insect attacks by attracting their natural enemies. For example, green leaf volatiles (GLVs) and terpenoids emitted from herbivore-damaged plants were found to be important in the host location of parasitic wasps. However, evidence of the functional roles and mechanisms of these semio-chemicals from a system of multiple plants in prey location by the parasitoid is limited. Little is known about the potential evolutionary trends between herbivore-induced host plant volatiles and the host location of their parasitoids.. Specifically, we found that volatile profiles from healthy plants revealed a partly phylogenetic signal, while the inducible compounds of the infested-plants did not result from the fact that the induced plant volatiles dominate most of the volatile blends of the host and non-host plants of the leafminer pests. We further show that the parasitoids are capable of distinguishing the damaged host plant from the non-host plant of the leafminers.Our results suggest that, as the most passive scenario of plant involvement, leafminers and mechanical damages evoke similar semio-chemicals. Using ubiquitous compounds, such as hexenol, for host location by general parasitoids could be an adaptation of the most conservative evolution of tritrophic interaction. Although for this, other compounds may be used to improve the precision of the host location by the parasitoids

    Does mycorrhization influence herbivore-induced volatile emission in Medicago truncatula?

    Get PDF
    Symbiosis with mycorrhizal fungi substantially impacts secondary metabolism and defensive traits of colonised plants. In the present study, we investigated the influence of mycorrhization (Glomus intraradices) on inducible indirect defences against herbivores using the model legume Medicago truncatula. Volatile emission by mycorrhizal and non-mycorrhizal plants was measured in reaction to damage inflicted by Spodoptera spp. and compared to the basal levels of volatile emission by plants of two different cultivars. Emitted volatiles were recorded using closed-loop stripping and gas chromatography/mass spectrometry. The documented volatile patterns were evaluated using multidimensional scaling to visualise patterns and stepwise linear discriminant analysis to distinguish volatile blends of plants with distinct physiological status and genetic background. Volatile blends emitted by different cultivars of M. truncatula prove to be clearly distinct, whereas mycorrhization only slightly influenced herbivore-induced volatile emissions. Still, the observed differences were sufficient to create classification rules to distinguish mycorrhizal and non-mycorrhizal plants by the volatiles emitted. Moreover, the effect of mycorrhization turned out to be opposed in the two cultivars examined. Root symbionts thus seem to alter indirect inducible defences of M. truncatula against insect herbivores. The impact of this effect strongly depends on the genetic background of the plant and, hence, in part explains the highly contradictory results on tripartite interactions gathered to date

    Eavesdropping on Plant Volatiles by a Specialist Moth: Significance of Ratio and Concentration

    Get PDF
    We investigated the role that the ratio and concentration of ubiquitous plant volatiles play in providing host specificity for the diet specialist grape berry moth Paralobesia viteana (Clemens) in the process of locating its primary host plant Vitis sp. In the first flight tunnel experiment, using a previously identified attractive blend with seven common but essential components (“optimized blend”), we found that doubling the amount of six compounds singly [(E)- & (Z)-linalool oxides, nonanal, decanal, β-caryophyllene, or germacrene-D], while keeping the concentration of other compounds constant, significantly reduced female attraction (average 76% full and 59% partial upwind flight reduction) to the synthetic blends. However, doubling (E)-4,8-dimethyl 1,3,7-nonatriene had no effect on female response. In the second experiment, we manipulated the volatile profile more naturally by exposing clonal grapevines to Japanese beetle feeding. In the flight tunnel, foliar damage significantly reduced female landing on grape shoots by 72% and full upwind flight by 24%. The reduction was associated with two changes: (1) more than a two-fold increase in total amount of the seven essential volatile compounds, and (2) changes in their relative ratios. Compared to the optimized blend, synthetic blends mimicking the volatile ratio emitted by damaged grapevines resulted in an average of 87% and 32% reduction in full and partial upwind orientation, respectively, and the level of reduction was similar at both high and low doses. Taken together, these results demonstrate that the specificity of a ubiquitous volatile blend is determined, in part, by the ratio of key volatile compounds for this diet specialist. However, P. viteana was also able to accommodate significant variation in the ratio of some compounds as well as the concentration of the overall mixture. Such plasticity may be critical for phytophagous insects to successfully eavesdrop on variable host plant volatile signals

    Combinations of Plant Water-Stress and Neonicotinoids Can Lead to Secondary Outbreaks of Banks Grass Mite (Oligonychus Pratensis Banks)

    Get PDF
    Spider mites, a cosmopolitan pest of agricultural and landscape plants, thrive under hot and dry conditions, which could become more frequent and extreme due to climate change. Recent work has shown that neonicotinoids, a widely used class of systemic insecticides that have come under scrutiny for non-target effects, can elevate spider mite populations. Both water-stress and neonicotinoids independently alter plant resistance against herbivores. Yet, the interaction between these two factors on spider mites is unclear, particularly for Banks grass mite (Oligonychus pratensis; BGM). We conducted a field study to examine the effects of water-stress (optimal irrigation = 100% estimated evapotranspiration (ET) replacement, water stress = 25% of the water provided to optimally irrigated plants) and neonicotinoid seed treatments (control, clothianidin, thiamethoxam) on resident mite populations in corn (Zea mays, hybrid KSC7112). Our field study was followed by a manipulative field cage study and a parallel greenhouse study, where we tested the effects of water-stress and neonicotinoids on BGM and plant responses. We found that water-stress and clothianidin consistently increased BGM densities, while thiamethoxam-treated plants only had this effect when plants were mature. Water-stress and BGM herbivory had a greater effect on plant defenses than neonicotinoids alone, and the combination of BGM herbivory with the two abiotic factors increased the concentration of total soluble proteins. These results suggest that spider mite outbreaks by combinations of changes in plant defenses and protein concentration are triggered by water-stress and neonicotinoids, but the severity of the infestations varies depending on the insecticide active ingredient
    corecore