222 research outputs found
Interaction Between Convection and Pulsation
This article reviews our current understanding of modelling convection
dynamics in stars. Several semi-analytical time-dependent convection models
have been proposed for pulsating one-dimensional stellar structures with
different formulations for how the convective turbulent velocity field couples
with the global stellar oscillations. In this review we put emphasis on two,
widely used, time-dependent convection formulations for estimating pulsation
properties in one-dimensional stellar models. Applications to pulsating stars
are presented with results for oscillation properties, such as the effects of
convection dynamics on the oscillation frequencies, or the stability of
pulsation modes, in classical pulsators and in stars supporting solar-type
oscillations.Comment: Invited review article for Living Reviews in Solar Physics. 88 pages,
14 figure
The influence of alkalosis on repeated high-intensity exercise performance and acid–base balance recovery in acute moderate hypoxic conditions
Purpose Exacerbated hydrogen cation (H⁺) production is suggested to be a key determinant of fatigue in acute hypoxic conditions. This study, therefore, investigated the effects of NaHCO3 ingestion on repeated 4 km TT cycling performance and post-exercise acid–base balance recovery in acute moderate hypoxic conditions. Methods Ten male trained cyclists completed four repeats of 2 × 4 km cycling time trials (TT1 and TT2) with 40 min passive recovery, each on different days. Each TT series was preceded by supplementation of one of the 0.2 g kg⁻¹ BM NaHCO3 (SBC2), 0.3 g kg⁻¹ BM NaHCO3 (SBC3), or a taste-matched placebo (0.07 g kg⁻¹ BM sodium chloride; PLA), administered in a randomized order. Supplements were administered at a pre-determined individual time to peak capillary blood bicarbonate concentration ([HCO3⁻]). Each TT series was also completed in a normobaric hypoxic chamber set at 14.5% FiO2 (~ 3000 m). Results Performance was improved following SBC3 in both TT1 (400.2 ± 24.1 vs. 405.9 ± 26.0 s; p = 0.03) and TT2 (407.2 ± 29.2 vs. 413.2 ± 30.8 s; p = 0.01) compared to PLA, displaying a very likely benefit in each bout. Compared to SBC2, a likely and possible benefit was also observed following SBC3 in TT1 (402.3 ± 26.5 s; p = 0.15) and TT2 (410.3 ± 30.8 s; p = 0.44), respectively. One participant displayed an ergolytic effect following SBC3, likely because of severe gastrointestinal discomfort, as SBC2 still provided ergogenic effects. Conclusion NaHCO3 ingestion improves repeated exercise performance in acute hypoxic conditions, although the optimal dose is likely to be 0.3 g kg⁻¹ BM
Pseudomyxoma Peritonei: A Need to Establish Evidence-Based Standard of Care—Is This the Right Trial?
The quest for the solar g modes
Solar gravity modes (or g modes) -- oscillations of the solar interior for
which buoyancy acts as the restoring force -- have the potential to provide
unprecedented inference on the structure and dynamics of the solar core,
inference that is not possible with the well observed acoustic modes (or p
modes). The high amplitude of the g-mode eigenfunctions in the core and the
evanesence of the modes in the convection zone make the modes particularly
sensitive to the physical and dynamical conditions in the core. Owing to the
existence of the convection zone, the g modes have very low amplitudes at
photospheric levels, which makes the modes extremely hard to detect. In this
paper, we review the current state of play regarding attempts to detect g
modes. We review the theory of g modes, including theoretical estimation of the
g-mode frequencies, amplitudes and damping rates. Then we go on to discuss the
techniques that have been used to try to detect g modes. We review results in
the literature, and finish by looking to the future, and the potential advances
that can be made -- from both data and data-analysis perspectives -- to give
unambiguous detections of individual g modes. The review ends by concluding
that, at the time of writing, there is indeed a consensus amongst the authors
that there is currently no undisputed detection of solar g modes.Comment: 71 pages, 18 figures, accepted by Astronomy and Astrophysics Revie
Asteroseismology and Interferometry
Asteroseismology provides us with a unique opportunity to improve our
understanding of stellar structure and evolution. Recent developments,
including the first systematic studies of solar-like pulsators, have boosted
the impact of this field of research within Astrophysics and have led to a
significant increase in the size of the research community. In the present
paper we start by reviewing the basic observational and theoretical properties
of classical and solar-like pulsators and present results from some of the most
recent and outstanding studies of these stars. We centre our review on those
classes of pulsators for which interferometric studies are expected to provide
a significant input. We discuss current limitations to asteroseismic studies,
including difficulties in mode identification and in the accurate determination
of global parameters of pulsating stars, and, after a brief review of those
aspects of interferometry that are most relevant in this context, anticipate
how interferometric observations may contribute to overcome these limitations.
Moreover, we present results of recent pilot studies of pulsating stars
involving both asteroseismic and interferometric constraints and look into the
future, summarizing ongoing efforts concerning the development of future
instruments and satellite missions which are expected to have an impact in this
field of research.Comment: Version as published in The Astronomy and Astrophysics Review, Volume
14, Issue 3-4, pp. 217-36
Research priorities for the COVID-19 pandemic and beyond: A call to action for psychological science
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) that has caused the coronavirus disease 2019 (COVID-19) pandemic represents the greatest international biopsychosocial emergency the world has faced for a century, and psychological science has an integral role to offer in helping societies recover. The aim of this paper is to set out the shorter- and longer-term priorities for research in psychological science that will (a) frame the breadth and scope of potential contributions from across the discipline; (b) enable researchers to focus their resources on gaps in knowledge; and (c) help funders and policymakers make informed decisions about future research priorities in order to best meet the needs of societies as they emerge from the acute phase of the pandemic. The research priorities were informed by an expert panel convened by the British Psychological Society that reflects the breadth of the discipline; a wider advisory panel with international input; and a survey of 539 psychological scientists conducted early in May 2020. The most pressing need is to research the negative biopsychosocial impacts of the COVID-19 pandemic to facilitate immediate and longer-term recovery, not only in relation to mental health, but also in relation to behaviour change and adherence, work, education, children and families, physical health and the brain, and social cohesion and connectedness. We call on psychological scientists to work collaboratively with other scientists and stakeholders, establish consortia, and develop innovative research methods while maintaining high-quality, open, and rigorous research standards
Research priorities for the COVID-19 pandemic and beyond: A call to action for psychological science
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) that has caused the coronavirus disease 2019 (COVID-19) pandemic represents the greatest international biopsychosocial emergency the world has faced for a century, and psychological science has an integral role to offer in helping societies recover. The aim of this paper is to set out the shorter- and longer-term priorities for research in psychological science that will (a) frame the breadth and scope of potential contributions from across the discipline; (b) enable researchers to focus their resources on gaps in knowledge; and (c) help funders and policymakers make informed decisions about future research priorities in order to best meet the needs of societies as they emerge from the acute phase of the pandemic. The research priorities were informed by an expert panel convened by the British Psychological Society that reflects the breadth of the discipline; a wider advisory panel with international input; and a survey of 539 psychological scientists conducted early in May 2020. The most pressing need is to research the negative biopsychosocial impacts of the COVID-19 pandemic to facilitate immediate and longer-term recovery, not only in relation to mental health, but also in relation to behaviour change and adherence, work, education, children and families, physical health and the brain, and social cohesion and connectedness. We call on psychological scientists to work collaboratively with other scientists and stakeholders, establish consortia, and develop innovative research methods while maintaining high-quality, open, and rigorous research standards
Recombinant plants provide a new approach to the production of bacterial polysaccharide for vaccines
Bacterial polysaccharides have numerous clinical or industrial uses. Recombinant plants could offer the possibility of producing bacterial polysaccharides on a large scale and free of contaminating bacterial toxins and antigens. We investigated the feasibility of this proposal by cloning and expressing the gene for the type 3 synthase (cps3S) of Streptococcus pneumoniae in Nicotinia tabacum, using the pCambia2301 vector and Agrobacterium tumefaciens-mediated gene transfer. In planta the recombinant synthase polymerised plant-derived UDP-glucose and UDP-glucuronic acid to form type 3 polysaccharide. Expression of the cps3S gene was detected by RT-PCR and production of the pneumococcal polysaccharide was detected in tobacco leaf extracts by double immunodiffusion, Western blotting and high-voltage paper electrophoresis. Because it is used a component of anti-pneumococcal vaccines, the immunogenicity of the plant-derived type 3 polysaccharide was tested. Mice immunised with extracts from recombinant plants were protected from challenge with a lethal dose of pneumococci in a model of pneumonia and the immunised mice had significantly elevated levels of serum anti-pneumococcal polysaccharide antibodies. This study provides the proof of the principle that bacterial polysaccharide can be successfully synthesised in plants and that these recombinant polysaccharides could be used as vaccines to protect against life-threatening infections
- …