111 research outputs found

    Autofluorescence lifetime augmented reality as a means for real-time robotic surgery guidance in human patients.

    Get PDF
    Due to loss of tactile feedback the assessment of tumor margins during robotic surgery is based only on visual inspection, which is neither significantly sensitive nor specific. Here we demonstrate time-resolved fluorescence spectroscopy (TRFS) as a novel technique to complement the visual inspection of oral cancers during transoral robotic surgery (TORS) in real-time and without the need for exogenous contrast agents. TRFS enables identification of cancerous tissue by its distinct autofluorescence signature that is associated with the alteration of tissue structure and biochemical profile. A prototype TRFS instrument was integrated synergistically with the da Vinci Surgical robot and the combined system was validated in swine and human patients. Label-free and real-time assessment and visualization of tissue biochemical features during robotic surgery procedure, as demonstrated here, not only has the potential to improve the intraoperative decision making during TORS but also other robotic procedures without modification of conventional clinical protocols

    Design principles governing the development of theranostic anticancer agents and their nanoformulations with photoacoustic properties

    Get PDF
    The unmet need to develop novel approaches for cancer diagnosis and treatment has led to the evolution of theranostic agents, which usually include, in addition to the anticancer drug, an imaging agent based mostly on fluorescent agents. Over the past few years, a non-invasive photoacoustic imaging modality has been effectively integrated into theranostic agents. Herein, we shed light on the design principles governing the development of theranostic agents with photoacoustic properties, which can be formulated into nanocarriers to enhance their potency. Specifically, we provide an extensive analysis of their individual constituents including the imaging dyes, drugs, linkers, targeting moieties, and their formulation into nanocarriers. Along these lines, we present numerous relevant paradigms. Finally, we discuss the clinical relevance of the specific strategy, as also the limitations and future perspectives, and through this review, we envisage paving the way for the development of theranostic agents endowed with photoacoustic properties as effective anticancer medicines

    Standardization and implementation of fluorescence molecular endoscopy in the clinic

    Get PDF
    Significance: Near-infrared fluorescence molecular endoscopy (NIR-FME) is an innovative technique allowing for in vivo visualization of molecular processes in hollow organs. Despite its potential for clinical translation, NIR-FME still faces challenges, for example, the lack of consensus in performing quality control and standardization of procedures and systems. This may hamper the clinical approval of the technology by authorities and its acceptance by endoscopists. Until now, several clinical trials using NIR-FME have been performed. However, most of these trials had different study designs, making comparison difficult. Aim: We describe the need for standardization in NIR-FME, provide a pathway for setting up a standardized clinical study, and describe future perspectives for NIR-FME. Body: Standardization is challenging due to many parameters. Invariable parameters refer to the hardware specifications. Variable parameters refer to movement or tissue optical properties. Phantoms can be of aid when defining the influence of these variables or when standardizing a procedure. Conclusion: There is a need for standardization in NIR-FME and hurdles still need to be overcome before a widespread clinical implementation of NIR-FME can be realized. When these hurdles are overcome, clinical outcomes can be compared and systems can be benchmarked, enabling clinical implementation

    Facile Synthesis of a Croconaine-Based Nanoformulation for Optoacoustic Imaging and Photothermal Therapy

    Get PDF
    Near-infrared (NIR) light absorbing theranostic agents can integrate optoacoustic imaging and photothermal therapy for effective personalized precision medicine. However, most of these agents face the challenges of unstable optical properties, material-associated toxicity, and nonbiodegradability, all of which limit their biomedical application. Several croconaine-based organic agents able to overcome some of these limitations have been recently reported, but these suffer from complicated multistep synthesis protocols. Herein, the use of CR760, a croconaine dye with excellent optical properties, is reported for nanoparticle formulation and subsequent optoacoustic imaging and photothermal therapy. Importantly, CR760 can be conveniently prepared in a single step from commercially available materials. Furthermore, CR760 can be covalently attached, via a polyethylene glycol linker, to the αvβ3 integrin ligand c(RGDyC), resulting in self-assembled nanoparticles (NPs) with cancer-targeting capability. Such CR760RGD-NPs exhibit strong NIR absorption, high photostability, high optoacoustic generation efficiency, and active tumor-targeting, making them ideal candidates for optoacoustic imaging. Due to favorable electron transfer, CR760RGD-NPs display a 45.37% photothermal conversion efficiency thereby rendering them additionally useful for photothermal therapy. Targeted tumor elimination, biosafety, and biocompatibility are demonstrated in a 4T1 murine breast tumor model. This work points to the use of CR760RGD-NPs as a promising nanoagent for NIR-based cancer phototheranostics

    Validation of Novel Molecular Imaging Targets Identified by Functional Genomic mRNA Profiling to Detect Dysplasia in Barrett’s Esophagus

    Get PDF
    SIMPLE SUMMARY: Barrett’s esophagus (BE) is the precursor of esophageal adenocarcinoma (EAC). Dysplastic BE (DBE), including low-grade dysplasia (LGD) and high-grade dysplasia (HGD), shows a higher progression risk to EAC compared to non-dysplastic BE (NDBE). If LGD or HGD is detected, more intensive endoscopic surveillance or endoscopic treatment is recommended. This results in a significantly improved prognosis compared to EACs treated by surgery and/or chemoradiotherapy. However, the miss rates for detecting DBE by endoscopy remain high. Fluorescence molecular endoscopy (FME) can fill this gap by targeting the tumor-specific expression of proteins. This study aimed to identify target proteins suitable for FME. We identified SPARC, SULF1, PKCι, and DDR1 as promising imaging targets for FME to differentiate DBE from NDBE tissue. We are also the first to develop near-infrared fluorescent tracers, SULF1-800CW and SPARC-800CW, for the endoscopic imaging of DBE tissue. ABSTRACT: Barrett’s esophagus (BE) is the precursor of esophageal adenocarcinoma (EAC). Dysplastic BE (DBE) has a higher progression risk to EAC compared to non-dysplastic BE (NDBE). However, the miss rates for the endoscopic detection of DBE remain high. Fluorescence molecular endoscopy (FME) can detect DBE and mucosal EAC by highlighting the tumor-specific expression of proteins. This study aimed to identify target proteins suitable for FME. Publicly available RNA expression profiles of EAC and NDBE were corrected by functional genomic mRNA (FGmRNA) profiling. Following a class comparison between FGmRNA profiles of EAC and NDBE, predicted, significantly upregulated genes in EAC were prioritized by a literature search. Protein expression of prioritized genes was validated by immunohistochemistry (IHC) on DBE and NDBE tissues. Near-infrared fluorescent tracers targeting the proteins were developed and evaluated ex vivo on fresh human specimens. In total, 1976 overexpressed genes were identified in EAC (n = 64) compared to NDBE (n = 66) at RNA level. Prioritization and IHC validation revealed SPARC, SULF1, PKCι, and DDR1 (all p < 0.0001) as the most attractive imaging protein targets for DBE detection. Newly developed tracers SULF1-800CW and SPARC-800CW both showed higher fluorescence intensity in DBE tissue compared to paired non-dysplastic tissue. This study identified SPARC, SULF1, PKCι, and DDR1 as promising targets for FME to differentiate DBE from NDBE tissue, for which SULF1-800CW and SPARC-800CW were successfully ex vivo evaluated. Clinical studies should further validate these findings

    Measurement, modelling, and closed-loop control of crystal shape distribution: Literature review and future perspectives

    Get PDF
    Crystal morphology is known to be of great importance to the end-use properties of crystal products, and to affect down-stream processing such as filtration and drying. However, it has been previously regarded as too challenging to achieve automatic closed-loop control. Previous work has focused on controlling the crystal size distribution, where the size of a crystal is often defined as the diameter of a sphere that has the same volume as the crystal. This paper reviews the new advances in morphological population balance models for modelling and simulating the crystal shape distribution (CShD), measuring and estimating crystal facet growth kinetics, and two- and three-dimensional imaging for on-line characterisation of the crystal morphology and CShD. A framework is presented that integrates the various components to achieve the ultimate objective of model-based closed-loop control of the CShD. The knowledge gaps and challenges that require further research are also identified

    Removing physiological motion from intravital and clinical functional imaging data.

    Get PDF
    Intravital microscopy can provide unique insights into the function of biological processes in a native context. However, physiological motion caused by peristalsis, respiration and the heartbeat can present a significant challenge, particularly for functional readouts such as fluorescence lifetime imaging (FLIM), which require longer acquisition times to obtain a quantitative readout. Here, we present and benchmark Galene, a versatile multi-platform software tool for image-based correction of sample motion blurring in both time resolved and conventional laser scanning fluorescence microscopy data in two and three dimensions. We show that Galene is able to resolve intravital FLIM-FRET images of intra-abdominal organs in murine models and NADH autofluorescence of human dermal tissue imaging subject to a wide range of physiological motions. Thus, Galene can enable FLIM imaging in situations where a stable imaging platform is not always possible and rescue previously discarded quantitative imaging data
    corecore