107 research outputs found

    KELT-21b: A Hot Jupiter Transiting the Rapidly Rotating Metal-poor Late-A Primary of a Likely Hierarchical Triple System

    Get PDF
    We present the discovery of KELT-21b, a hot Jupiter transiting the V = 10.5 A8V star HD 332124. The planet has an orbital period of P = 3.6127647 ± 0.0000033 days and a radius of 1.586-0.040+0.039 RJ. We set an upper limit on the planetary mass of at confidence. We confirmed the planetary nature of the transiting companion using this mass limit and Doppler tomographic observations to verify that the companion transits HD 332124. These data also demonstrate that the planetary orbit is well-aligned with the stellar spin, with a sky-projected spin-orbit misalignment of λ = -5.6-1.91.7. The star has Teff = 7598-8481 K, Mz.ast; = 1.458-0.028+0.029 M⊙, Rz.ast; = 1.638 ± 0.034 R⊙ and v sin I∗ = 146 km s-1, the highest projected rotation velocity of any star known to host a transiting hot Jupiter. The star also appears to be somewhat metal poor and α-enhanced, with [Fe/H] = -405-0.033+0.032 and [α/Fe] = 0.145 ± 0.053; these abundances are unusual, but not extraordinary, for a young star with thin-disk kinematics like KELT-21. High-resolution imaging observations revealed the presence of a pair of stellar companions to KELT-21, located at a separation of 1.″2 and with a combined contrast of ΔKs = 6.39 ± 0.06 with respect to the primary. Although these companions are most likely physically associated with KELT-21, we cannot confirm this with our current data. If associated, the candidate companions KELT-21 B and C would each have masses of ∼0.12 M⊙, a projected mutual separation of ∼20 au, and a projected separation of ∼500 au from KELT-21. KELT-21b may be one of only a handful of known transiting planets in hierarchical triple stellar systems

    Kelt-4Ab: An inflated hot jupiter transiting the bright (V ∼ 10) component of a hierarchical triple

    Get PDF
    We report the discovery of KELT-4Ab, an inflated, transiting Hot Jupiter orbiting the brightest component of ahierarchical triple stellar system. The host star is an F star with Teff =6206 ± 75 K, log g =4.108 ± 0.014, [Fe/H]= -0.116+0.069+0.065, M∗ = 1.201-0.061+0.067 M⊙, and R∗ = 1.603-0.038+0.039 R⊙. The best-fit linear ephemeris is BJDTDB =2456193.29157±0.00021 + E(2.9895936±0.0000048). With a magnitude of V∼10, a planetary radius of 1.699-0.045+0.046 RJ, and a mass of 0.902-0.059+0.060 MJ, it is the brightest host among the population of inflated Hot Jupiters (RP \u3e 1.5RJ), making it a valuable discovery for probing the nature of inflated planets. In addition, its existence within a hierarchical triple and its proximity to Earth (210 pc) provide a unique opportunity for dynamical studies with continued monitoring with high resolution imaging and precision radial velocities. The projected separation between KELT-4A and KELT-4BC is 328±16 AU and the projected separation between KELT-4B and KELT-4C is 10.30±0.74 AU. Assuming face-on, circular orbits, their respective periods would be 3780±290 and 29.4±3.6 years and the astrometric motions relative to the epoch in this work of both the binary stars around each other and of the binary around the primary star would be detectable now and may provide meaningful constraints on the dynamics of the system

    KELT-12b: A P ∼ 5 day, Highly Inflated Hot Jupiter Transiting a Mildly Evolved Hot Star

    Get PDF
    We announce the discovery of KELT-12b, a highly inflated Jupiter-mass planet transiting the mildly evolved, V = 10.64 host star TYC 2619-1057-1. We followed up the initial transit signal in the KELT-North survey data with precise ground-based photometry, high-resolution spectroscopy, precise radial velocity measurements, and high-resolution adaptive optics imaging. Our preferred best-fit model indicates that the host star has = 6279 ±51 K, = 3.89 ±0.05, [Fe/H] = 0.19+0.08-0.09, = M∗ = 1.59+0.070.09M, and R ∗= 2.37 ±0.17 . The planetary companion has Mp= 0.95 ±0.14 MJ, RP = 1.78+0.17-0.16 RJ, log gP = 2.87+0.9-0.09 and density pp 0.210.070.05= g cm-3, making it one of the most inflated giant planets known. Furthermore, for future follow-up, we report a high-precision time of inferior conjunction in BJDTDB of 2,457,083.660459 ±0.000894 and period of P = 5.0316216 ± 0.000032days. Despite the relatively large separation of ∼0.07 au implied by its ∼5.03-day orbital period, KELT-12b receives significant flux of 2.38+0.32-0.29 × 109 erg s-1 cm-2 from its host. We compare the radii and insolations of transiting gas giant planets around hot (Teff 6250 K) and cool stars, noting that the observed paucity of known transiting giants around hot stars with low insolation is likely due to selection effects. We underscore the significance of long-term ground-based monitoring of hot stars and space-based targeting of hot stars with the Transiting Exoplanet Survey Satellite to search for inflated gas giants in longer-period orbits

    The TESS-Keck Survey II: An Ultra-Short Period Rocky Planet and its Siblings Transiting the Galactic Thick-Disk Star TOI-561

    Full text link
    We report the discovery of TOI-561, a multi-planet system in the galactic thick disk that contains a rocky, ultra-short period planet (USP). This bright (V=10.2V=10.2) star hosts three small transiting planets identified in photometry from the NASA TESS mission: TOI-561 b (TOI-561.02, P=0.44 days, Rb=1.45±0.11RR_b = 1.45\pm0.11\,R_\oplus), c (TOI-561.01, P=10.8 days, Rc=2.90±0.13RR_c=2.90\pm0.13\,R_\oplus), and d (TOI-561.03, P=16.3 days, Rd=2.32±0.16RR_d=2.32\pm0.16\,R_\oplus). The star is chemically ([Fe/H]=0.41±0.05=-0.41\pm0.05, [α\alpha/H]=+0.23±0.05=+0.23\pm0.05) and kinematically consistent with the galactic thick disk population, making TOI-561 one of the oldest (10±310\pm3\,Gyr) and most metal-poor planetary systems discovered yet. We dynamically confirm planets b and c with radial velocities from the W. M. Keck Observatory High Resolution Echelle Spectrometer. Planet b has a mass and density of 3.2±0.8M3.2\pm0.8\,M_\oplus and 5.51.6+2.05.5^{+2.0}_{-1.6}\,g\,cm3^{-3}, consistent with a rocky composition. Its lower-than-average density is consistent with an iron-poor composition, although an Earth-like iron-to-silicates ratio is not ruled out. Planet c is 7.0±2.3M7.0\pm2.3\,M_\oplus and 1.6±0.61.6\pm0.6\,g\,cm3^{-3}, consistent with an interior rocky core overlaid with a low-mass volatile envelope. Several attributes of the photometry for planet d (which we did not detect dynamically) complicate the analysis, but we vet the planet with high-contrast imaging, ground-based photometric follow-up and radial velocities. TOI-561 b is the first rocky world around a galactic thick-disk star confirmed with radial velocities and one of the best rocky planets for thermal emission studies.Comment: Accepted at The Astronomical Journal; 25 pages, 10 figure

    TKS X: Confirmation of TOI-1444b and a Comparative Analysis of the Ultra-short-period Planets with Hot Neptunes

    Full text link
    We report the discovery of TOI-1444b, a 1.4-RR_\oplus super-Earth on a 0.47-day orbit around a Sun-like star discovered by {\it TESS}. Precise radial velocities from Keck/HIRES confirmed the planet and constrained the mass to be 3.87±0.71M3.87 \pm 0.71 M_\oplus. The RV dataset also indicates a possible non-transiting, 16-day planet (11.8±2.9M11.8\pm2.9M_\oplus). We report a tentative detection of phase curve variation and secondary eclipse of TOI-1444b in the {\it TESS} bandpass. TOI-1444b joins the growing sample of 17 ultra-short-period planets with well-measured masses and sizes, most of which are compatible with an Earth-like composition. We take this opportunity to examine the expanding sample of ultra-short-period planets (<2R<2R_\oplus) and contrast them with the newly discovered sub-day ultra-hot Neptunes (>3R>3R_\oplus, >2000F>2000F_\oplus TOI-849 b, LTT9779 b and K2-100). We find that 1) USPs have predominately Earth-like compositions with inferred iron core mass fractions of 0.32±\pm0.04; and have masses below the threshold of runaway accretion (10M\sim 10M_\oplus), while ultra-hot Neptunes are above the threshold and have H/He or other volatile envelope. 2) USPs are almost always found in multi-planet system consistent with a secular interaction formation scenario; ultra-hot Neptunes (PorbP_{\rm orb} \lesssim1 day) tend to be ``lonely' similar to longer-period hot Neptunes(PorbP_{\rm orb}1-10 days) and hot Jupiters. 3) USPs occur around solar-metallicity stars while hot Neptunes prefer higher metallicity hosts. 4) In all these respects, the ultra-hot Neptunes show more resemblance to hot Jupiters than the smaller USP planets, although ultra-hot Neptunes are rarer than both USP and hot Jupiters by 1-2 orders of magnitude.Comment: Accepted too AJ. 12 Figures, 4 table

    Affectus Hispaniae en la historiografía del Alto Imperio

    Get PDF
    This paper analyses texts written by Greek and Latin High Empire historians dealing with Hispania. Some of the authors have a very positive view (Florus, Iustinus, Appian) while others are clearly negative (Veleius Paterculus, Valerius Maximus) though most of them show little interest, indifference or variety of opinions. When there is interest in the region or praise, it is because the author comes from Hispania or he is trying to please an emperor born in Hispania, but it could also be due to a universal conception of history revealing a critical attitude towards Roman imperialism, as in Appian. The praise found in Iustinus’s epitome should be attributed to the author of the epitome rather than to Pompeius Trogus. This can be taken as evidence for situating Iustinus’s life and work in the 2nd century A.D. Loathing of Hispania seems to have its origins in conservative, ‘optimate’ nationalist circles, who perceive the province as the ‘popular’ region that acclaimed and welcomed ‘seditious’ individuals such as Tiberius Gracchus and Sertorius.Se estudian en este trabajo los textos de historiadores del Alto Imperio, latinos y griegos, que tratan sobre Hispania. En algunos autores encontramos una visión muy positiva (Floro, Justino, Apiano) y en otros claramente negativa (Veleyo Patérculo, Valerio Máximo), aunque en la mayoría de los casos hay escasa atención, indiferencia o diversidad de opiniones. El interés por la región y los elogios pueden estar motivados por el origen hispánico del autor o su voluntad de agradar a algún emperador oriundo de Hispania, pero también por una concepción universal de la historia que denota en ocasiones una posición crítica con el imperialismo romano, como es el caso de Apiano. La alabanza que hallamos en el epítome de Justino creemos que debe atribuirse más al epitomador que a Pompeyo Trogo, lo que apoyaría una datación temprana de la vida y la obra de Justino (s. II d.C.). La aversión hacia Hispania parece haber surgido en medios conservadores, “optimates” nacionalistas, que ven la provincia como el territorio “popular”, que encumbró y acogió a “sediciosos” como Tiberio Graco y Sertorio

    Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London
    corecore