20 research outputs found

    A cellular analysis of meristem activity at the end of flowering points to cytokinin as a major regulator of proliferative arrest in Arabidopsis

    Full text link
    [EN] In monocarpic plants, all reproductive meristem activity arrests and flower production ceases after the production of a certain number of fruits. This proliferative arrest (PA) is an evolutionary adaptation that ensures nutrient availability for seed production. Moreover, PA is a process of agronomic interest because it affects the duration of the flowering period and therefore fruit production. While our knowledge of the inputs and genetic factors controlling the initiation of the flowering period is extensive, little is known about the regulatory pathways and cellular events that participate in the end of flowering and trigger PA. Here, we characterize with high spatiotemporal resolution the cellular and molecular changes related to cell proliferation and meristem activity in the shoot apical meristem throughout the flowering period and PA. Our results suggest that cytokinin (CK) signaling repression precedes PA and that this hormone is sufficient to prevent and revert the process. We have also observed that repression of known CK downstream factors, such as type B cyclins and WUSCHEL (WUS), correlates with PA. These molecular changes are accompanied by changes in cell size and number likely caused by the cessation of cell division and WUS activity during PA. Parallel assays in fruitfull (ful) mutants, which do not undergo PA, have revealed that FUL may promote PA via repression of these CK-dependent pathways. Moreover, our data allow to define two phases, based on the relative contribution of FUL, that lead to PA: an early reduction of CK-related events and a late blocking of these events.We thank Bruno Mudller and Venugopala Reddy for kindly providing the TCSn:GFP-ER and WUSpro:EGFP-WUS lines, respectively, as well as Vicente Balanza, Neha Bhatia, Antonio Serrano-Mislata, Concha Gomez-Mena, and Francisco Madueo for helpful feedback on the manuscript. P.M. acknowledges Fundacion General CSIC (ComFuturo program) for current funding. The laboratory of C.F. is supported by grants from Ministerio de Ciencia e In-novacion (RTI2018-099239-B-I00) and Generalitat Valenciana (PROMETEU/2019/004) .Merelo Cremades, P.; González-Cuadra, I.; Ferrandiz Maestre, C. (2022). A cellular analysis of meristem activity at the end of flowering points to cytokinin as a major regulator of proliferative arrest in Arabidopsis. Current Biology. 32(4):749-762. https://doi.org/10.1016/j.cub.2021.11.06974976232

    Role of age and comorbidities in mortality of patients with infective endocarditis

    Get PDF
    [Purpose]: The aim of this study was to analyse the characteristics of patients with IE in three groups of age and to assess the ability of age and the Charlson Comorbidity Index (CCI) to predict mortality. [Methods]: Prospective cohort study of all patients with IE included in the GAMES Spanish database between 2008 and 2015.Patients were stratified into three age groups:<65 years,65 to 80 years,and ≥ 80 years.The area under the receiver-operating characteristic (AUROC) curve was calculated to quantify the diagnostic accuracy of the CCI to predict mortality risk. [Results]: A total of 3120 patients with IE (1327 < 65 years;1291 65-80 years;502 ≥ 80 years) were enrolled.Fever and heart failure were the most common presentations of IE, with no differences among age groups.Patients ≥80 years who underwent surgery were significantly lower compared with other age groups (14.3%,65 years; 20.5%,65-79 years; 31.3%,≥80 years). In-hospital mortality was lower in the <65-year group (20.3%,<65 years;30.1%,65-79 years;34.7%,≥80 years;p < 0.001) as well as 1-year mortality (3.2%, <65 years; 5.5%, 65-80 years;7.6%,≥80 years; p = 0.003).Independent predictors of mortality were age ≥ 80 years (hazard ratio [HR]:2.78;95% confidence interval [CI]:2.32–3.34), CCI ≥ 3 (HR:1.62; 95% CI:1.39–1.88),and non-performed surgery (HR:1.64;95% CI:11.16–1.58).When the three age groups were compared,the AUROC curve for CCI was significantly larger for patients aged <65 years(p < 0.001) for both in-hospital and 1-year mortality. [Conclusion]: There were no differences in the clinical presentation of IE between the groups. Age ≥ 80 years, high comorbidity (measured by CCI),and non-performance of surgery were independent predictors of mortality in patients with IE.CCI could help to identify those patients with IE and surgical indication who present a lower risk of in-hospital and 1-year mortality after surgery, especially in the <65-year group

    Sloan Digital Sky Survey IV: mapping the Milky Way, nearby galaxies, and the distant universe

    Get PDF
    We describe the Sloan Digital Sky Survey IV (SDSS-IV), a project encompassing three major spectroscopic programs. The Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) is observing hundreds of thousands of Milky Way stars at high resolution and high signal-to-noise ratios in the near-infrared. The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey is obtaining spatially resolved spectroscopy for thousands of nearby galaxies (median ). The extended Baryon Oscillation Spectroscopic Survey (eBOSS) is mapping the galaxy, quasar, and neutral gas distributions between and 3.5 to constrain cosmology using baryon acoustic oscillations, redshift space distortions, and the shape of the power spectrum. Within eBOSS, we are conducting two major subprograms: the SPectroscopic IDentification of eROSITA Sources (SPIDERS), investigating X-ray AGNs and galaxies in X-ray clusters, and the Time Domain Spectroscopic Survey (TDSS), obtaining spectra of variable sources. All programs use the 2.5 m Sloan Foundation Telescope at the Apache Point Observatory; observations there began in Summer 2014. APOGEE-2 also operates a second near-infrared spectrograph at the 2.5 m du Pont Telescope at Las Campanas Observatory, with observations beginning in early 2017. Observations at both facilities are scheduled to continue through 2020. In keeping with previous SDSS policy, SDSS-IV provides regularly scheduled public data releases; the first one, Data Release 13, was made available in 2016 July

    Sloan Digital Sky Survey IV: Mapping the Milky Way, Nearby Galaxies, and the Distant Universe

    Get PDF
    We describe the Sloan Digital Sky Survey IV (SDSS-IV), a project encompassing three major spectroscopic programs. The Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) is observing hundreds of thousands of Milky Way stars at high resolution and high signal-to-noise ratios in the near-infrared. The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey is obtaining spatially resolved spectroscopy for thousands of nearby galaxies (median z0.03z\sim 0.03). The extended Baryon Oscillation Spectroscopic Survey (eBOSS) is mapping the galaxy, quasar, and neutral gas distributions between z0.6z\sim 0.6 and 3.5 to constrain cosmology using baryon acoustic oscillations, redshift space distortions, and the shape of the power spectrum. Within eBOSS, we are conducting two major subprograms: the SPectroscopic IDentification of eROSITA Sources (SPIDERS), investigating X-ray AGNs and galaxies in X-ray clusters, and the Time Domain Spectroscopic Survey (TDSS), obtaining spectra of variable sources. All programs use the 2.5 m Sloan Foundation Telescope at the Apache Point Observatory; observations there began in Summer 2014. APOGEE-2 also operates a second near-infrared spectrograph at the 2.5 m du Pont Telescope at Las Campanas Observatory, with observations beginning in early 2017. Observations at both facilities are scheduled to continue through 2020. In keeping with previous SDSS policy, SDSS-IV provides regularly scheduled public data releases; the first one, Data Release 13, was made available in 2016 July

    Sloan Digital Sky Survey IV : mapping the Milky Way, nearby galaxies, and the distant universe

    Get PDF
    We describe the Sloan Digital Sky Survey IV (SDSS-IV), a project encompassing three major spectroscopic programs. The Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) is observing hundreds of thousands of Milky Way stars at high resolution and high signal-to-noise ratios in the near-infrared. The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey is obtaining spatially resolved spectroscopy for thousands of nearby galaxies (median z ~ 0.03). The extended Baryon Oscillation Spectroscopic Survey (eBOSS) is mapping the galaxy, quasar, and neutral gas distributions between z ~ 0.6 and 3.5 to constrain cosmology using baryon acoustic oscillations, redshift space distortions, and the shape of the power spectrum. Within eBOSS, we are conducting two major subprograms: the SPectroscopic IDentification of eROSITA Sources (SPIDERS), investigating X-ray AGNs and galaxies in X-ray clusters, and the Time Domain Spectroscopic Survey (TDSS), obtaining spectra of variable sources. All programs use the 2.5 m Sloan Foundation Telescope at the Apache Point Observatory; observations there began in Summer 2014. APOGEE-2 also operates a second near-infrared spectrograph at the 2.5 m du Pont Telescope at Las Campanas Observatory, with observations beginning in early 2017. Observations at both facilities are scheduled to continue through 2020. In keeping with previous SDSS policy, SDSS-IV provides regularly scheduled public data releases; the first one, Data Release 13, was made available in 2016 July

    Impact of COVID-19 on cardiovascular testing in the United States versus the rest of the world

    Get PDF
    Objectives: This study sought to quantify and compare the decline in volumes of cardiovascular procedures between the United States and non-US institutions during the early phase of the coronavirus disease-2019 (COVID-19) pandemic. Background: The COVID-19 pandemic has disrupted the care of many non-COVID-19 illnesses. Reductions in diagnostic cardiovascular testing around the world have led to concerns over the implications of reduced testing for cardiovascular disease (CVD) morbidity and mortality. Methods: Data were submitted to the INCAPS-COVID (International Atomic Energy Agency Non-Invasive Cardiology Protocols Study of COVID-19), a multinational registry comprising 909 institutions in 108 countries (including 155 facilities in 40 U.S. states), assessing the impact of the COVID-19 pandemic on volumes of diagnostic cardiovascular procedures. Data were obtained for April 2020 and compared with volumes of baseline procedures from March 2019. We compared laboratory characteristics, practices, and procedure volumes between U.S. and non-U.S. facilities and between U.S. geographic regions and identified factors associated with volume reduction in the United States. Results: Reductions in the volumes of procedures in the United States were similar to those in non-U.S. facilities (68% vs. 63%, respectively; p = 0.237), although U.S. facilities reported greater reductions in invasive coronary angiography (69% vs. 53%, respectively; p < 0.001). Significantly more U.S. facilities reported increased use of telehealth and patient screening measures than non-U.S. facilities, such as temperature checks, symptom screenings, and COVID-19 testing. Reductions in volumes of procedures differed between U.S. regions, with larger declines observed in the Northeast (76%) and Midwest (74%) than in the South (62%) and West (44%). Prevalence of COVID-19, staff redeployments, outpatient centers, and urban centers were associated with greater reductions in volume in U.S. facilities in a multivariable analysis. Conclusions: We observed marked reductions in U.S. cardiovascular testing in the early phase of the pandemic and significant variability between U.S. regions. The association between reductions of volumes and COVID-19 prevalence in the United States highlighted the need for proactive efforts to maintain access to cardiovascular testing in areas most affected by outbreaks of COVID-19 infection

    Sloan Digital Sky Survey IV: mapping the Milky Way, nearby galaxies, and the distant universe

    Get PDF
    We describe the Sloan Digital Sky Survey IV (SDSS-IV), a project encompassing three major spectroscopic programs. The Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) is observing hundreds of thousands of Milky Way stars at high resolution and high signal-to-noise ratios in the near-infrared. The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey is obtaining spatially resolved spectroscopy for thousands of nearby galaxies (median ). The extended Baryon Oscillation Spectroscopic Survey (eBOSS) is mapping the galaxy, quasar, and neutral gas distributions between and 3.5 to constrain cosmology using baryon acoustic oscillations, redshift space distortions, and the shape of the power spectrum. Within eBOSS, we are conducting two major subprograms: the SPectroscopic IDentification of eROSITA Sources (SPIDERS), investigating X-ray AGNs and galaxies in X-ray clusters, and the Time Domain Spectroscopic Survey (TDSS), obtaining spectra of variable sources. All programs use the 2.5 m Sloan Foundation Telescope at the Apache Point Observatory; observations there began in Summer 2014. APOGEE-2 also operates a second near-infrared spectrograph at the 2.5 m du Pont Telescope at Las Campanas Observatory, with observations beginning in early 2017. Observations at both facilities are scheduled to continue through 2020. In keeping with previous SDSS policy, SDSS-IV provides regularly scheduled public data releases; the first one, Data Release 13, was made available in 2016 July

    Estudio de la respuesta a citoquininas y las divisiones celulares durante la parada global de la proliferación en Arabidopsis thaliana

    Full text link
    [ES] Muchas especies de plantas anuales y algunas perennes, entre ellas gran parte de los cultivos con importancia económica, pertenecen al grupo de las plantas monocárpicas. Éstas presentan una única fase reproductiva tras la cual entran en estado de senescencia y mueren. En plantas monocárpicas, después de la producción de cierto número de frutos, se detiene de manera coordinada la actividad de los meristemos reproductivos y, con ello, la producción de flores y frutos. Este proceso se denomina Parada Global de la Proliferación o Global Proliferative Arrest (GPA) y constituye una adaptación evolutiva para asegurar la redistribución de nutrientes hacia la producción de semillas. Además, desde un punto de vista agronómico, el proceso del GPA constituye una diana importante en programas de mejora ya que determina la duración de la fase reproductiva y, con ello, el rendimiento de los cultivos monocárpicos. Estudios previos basados en análisis fisiológicos y genéticos muestran que la producción de frutos y semillas controla el momento en el que se produce el GPA. Sin embargo, la naturaleza molecular de las señales que actúan desde los frutos o semillas al meristemo reproductivo o inflorescente (MI) se desconoce completamente. Además de este control sistémico, hay evidencias de un control genético del GPA dependiente de la edad de la planta. En este sentido, se ha propuesto que el módulo formado por los factores de transcripción FRUITULL y APETALA2, implicados en procesos del desarrollo de frutos y flores, participa en la regulación del GPA dependiente de la edad, y que este módulo actúa en paralelo a los factores dependientes de las semillas. El presente Trabajo Fin de Máster (TFM) pretende aportar mayor información acerca de los mecanismos moleculares que regulan el GPA así como identificar marcadores morfológicos que ayuden a definir cuándo y cómo se produce este proceso. En particular, este TFM se ha centrado en el estudio de factores implicados en el mantenimiento de la actividad meristemática, como son la señalización de las citoquininas (CKs) y la actividad mitótica. La monitorización de un sensor de señalización de CKs (TCSn::GFP:ER) y de marcadores de la actividad mitótica (pCYCB1;2::D-box:GUS y pCYCB1;2::D-box:GFP) en MIs activos, en GPA así como en diferentes fondos genéticos y en MIs tras diferentes tratamientos, muestra una correlación entre la represión de la señalización de las CKs y el cese de la actividad mitótica y el inicio del GPA. Además, la reversión tanto de la señalización de las CKs (promotoras de la división celular) como de la actividad mitótica tras la reactivación de MIs parados sugiere que el GPA es un estado de quiescencia mitótica de los MIs.González Cuadra, I. (2020). Estudio de la respuesta a citoquininas y las divisiones celulares durante la parada global de la proliferación en Arabidopsis thaliana. http://hdl.handle.net/10251/136775TFG

    A cellular analysis of meristem activity at the end of flowering points to cytokinin as a major regulator of proliferative arrest in Arabidopsis

    No full text
    In monocarpic plants, all reproductive meristem activity arrests and flower production ceases after the production of a certain number of fruits. This proliferative arrest (PA) is an evolutionary adaptation that ensures nutrient availability for seed production. Moreover, PA is a process of agronomic interest because it affects the duration of the flowering period and therefore fruit production. While our knowledge of the inputs and genetic factors controlling the initiation of the flowering period is extensive, little is known about the regulatory pathways and cellular events that participate in the end of flowering and trigger PA. Here, we characterize with high spatiotemporal resolution the cellular and molecular changes related to cell proliferation and meristem activity in the shoot apical meristem throughout the flowering period and PA. Our results suggest that cytokinin (CK) signaling repression precedes PA and that this hormone is sufficient to prevent and revert the process. We have also observed that repression of known CK downstream factors, such as type B cyclins and WUSCHEL (WUS), correlates with PA. These molecular changes are accompanied by changes in cell size and number likely caused by the cessation of cell division and WUS activity during PA. Parallel assays in fruitfull (ful) mutants, which do not undergo PA, have revealed that FUL may promote PA via repression of these CK-dependent pathways. Moreover, our data allow to define two phases, based on the relative contribution of FUL, that lead to PA: an early reduction of CK-related events and a late blocking of these events.Peer reviewe
    corecore