12 research outputs found

    Divergent Routing of Positive and Negative Information from the Amygdala during Memory Retrieval

    Get PDF
    Although the basolateral amygdala (BLA) is known to play a critical role in the formation of memories of both positive and negative valence, the coding and routing of valence-related information is poorly understood. Here, we recorded BLA neurons during the retrieval of associative memories and used optogenetic-mediated phototagging to identify populations of neurons that synapse in the nucleus accumbens (NAc), the central amygdala (CeA), or ventral hippocampus (vHPC). We found that despite heterogeneous neural responses within each population, the proportions of BLA-NAc neurons excited by reward predictive cues and of BLA-CeA neurons excited by aversion predictive cues were higher than within the entire BLA. Although the BLA-vHPC projection is known to drive behaviors of innate negative valence, these neurons did not preferentially code for learned negative valence. Together, these findings suggest that valence encoding in the BLA is at least partially mediated via divergent activity of anatomically defined neural populations.National Institute of Mental Health (U.S.) (Grant R01-MH102441-01)National Institutes of Health (U.S.) (Grant DP2-DK-102256-01

    A light- and calcium-gated transcription factor for imaging and manipulating activated neurons

    No full text
    Activity remodels neurons, altering their molecular, structural, and electrical characteristics. To enable the selective characterization and manipulation of these neurons, we present FLARE, an engineered transcription factor that drives expression of fluorescent proteins, opsins, and other genetically encoded tools only in the subset of neurons that experienced activity during a user-defined time window. FLARE senses the coincidence of elevated cytosolic calcium and externally applied blue light, which together produce translocation of a membrane-anchored transcription factor to the nucleus to drive expression of any transgene. In cultured rat neurons, FLARE gives a light-to-dark signal ratio of 120 and a high-to low-calcium signal ratio of 10 after 10 min of stimulation. Opsin expression permitted functional manipulation of FLARE-marked neurons. In adult mice, FLARE also gave light- A nd motor-activity-dependent transcription in the cortex. Due to its modular design, minute-scale temporal resolution, and minimal dark-state leak, FLARE should be useful for the study of activity-dependent processes in neurons and other cells that signal with calcium.Massachusetts Institute of TechnologyStanford UniversityJPB FoundationPicower Institute for Learning and Memory (Engineering Award)National Institute of Mental Health (U.S.) (R01-MH102441-01)National Institutes of Health (U.S.) (Director's New Innovator Award DP2-DK-102256-01

    Thalamus sends information about arousal but not valence to the amygdala

    No full text
    Abstract Rationale The basolateral amygdala (BLA) and medial geniculate nucleus of the thalamus (MGN) have both been shown to be necessary for the formation of associative learning. While the role that the BLA plays in this process has long been emphasized, the MGN has been less well-studied and surrounded by debate regarding whether the relay of sensory information is active or passive. Objectives We seek to understand the role the MGN has within the thalamoamgydala circuit in the formation of associative learning. Methods Here, we use optogenetics and in vivo electrophysiological recordings to dissect the MGN-BLA circuit and explore the specific subpopulations for evidence of learning and synthesis of information that could impact downstream BLA encoding. We employ various machine learning techniques to investigate function within neural subpopulations. We introduce a novel method to investigate tonic changes across trial-by-trial structure, which offers an alternative approach to traditional trial-averaging techniques. Results We find that the MGN appears to encode arousal but not valence, unlike the BLA which encodes for both. We find that the MGN and the BLA appear to react differently to expected and unexpected outcomes; the BLA biased responses toward reward prediction error and the MGN focused on anticipated punishment. We uncover evidence of tonic changes by visualizing changes across trials during inter-trial intervals (baseline epochs) for a subset of cells. Conclusion We conclude that the MGN-BLA projector population acts as both filter and transferer of information by relaying information about the salience of cues to the amygdala, but these signals are not valence-specified

    Partial omission of bleomycin for early‐stage Hodgkin lymphoma patients treated with combined modality therapy: Does incomplete ABVD lead to inferior outcomes?

    No full text
    Abstract Classical Hodgkin lymphoma (HL) patients achieve excellent outcomes; therefore, treatment de‐escalation strategies to spare toxicity have been prioritized. In a large randomized trial of early‐stage HL patients, omission of chemotherapeutic agents including bleomycin from the standard ABVD (doxorubicin, bleomycin, vinblastine, dacarbazine) regimen was not found to be noninferior; however, the effect of partial omission is unknown. We investigated the effect of bleomycin omission on outcome for 150 early‐stage HL patients. At 8 years, freedom from relapse was 99% for both patients who received complete or incomplete bleomycin, which is reassuring for patients requiring bleomycin omission due to toxicity

    Dorsal Raphe Dopamine Neurons Represent the Experience of Social Isolation

    No full text
    The motivation to seek social contact may arise from either positive or negative emotional states, as social interaction can be rewarding and social isolation can be aversive. While ventral tegmental area (VTA) dopamine (DA) neurons may mediate social reward, a cellular substrate for the negative affective state of loneliness has remained elusive. Here, we identify a functional role for DA neurons in the dorsal raphe nucleus (DRN), in which we observe synaptic changes following acute social isolation. DRN DA neurons show increased activity upon social contact following isolation, revealed by in vivo calcium imaging. Optogenetic activation of DRN DA neurons increases social preference but causes place avoidance. Furthermore, these neurons are necessary for promoting rebound sociability following an acute period of isolation. Finally, the degree to which these neurons modulate behavior is predicted by social rank, together supporting a role for DRN dopamine neurons in mediating a loneliness-like state.McKnight Foundation (New York Stem Cell Foundation-Robertson Investigator and McKnight Scholar)JPB FoundationWhitehall FoundationKlingenstein FoundationBrain & Behavior Research Foundation (NARSAD Young Investigator Award)Alfred P. Sloan FoundationWhitehead Institute for Biomedical Research (Whitehead Career Development Chair)National Institutes of Health (U.S.) (R01-MH102441-01 (NIMH))National Institutes of Health (U.S.) (NIH grant U54-CA112967)National Institute on Aging (RF1-AG047661-01 (NIA))National Institutes of Health (U.S.) (NIH Director’s New Investigator Award DP2- DK-102256-01 (NIDDK))Medical Research Council (Great Britain) (MC-A654-5QB70)National Institute of General Medical Sciences (U.S.) (NIGMS T32GM007484

    Corticoamygdala Transfer of Socially Derived Information Gates Observational Learning

    No full text
    Observational learning is a powerful survival tool allowing individuals to learn about threat-predictive stimuli without directly experiencing the pairing of the predictive cue and punishment. This ability has been linked to the anterior cingulate cortex (ACC) and the basolateral amygdala (BLA). To investigate how information is encoded and transmitted through this circuit, we performed electrophysiological recordings in mice observing a demonstrator mouse undergo associative fear conditioning and found that BLA-projecting ACC (ACC→BLA) neurons preferentially encode socially derived aversive cue information. Inhibition of ACC→BLA alters real-time amygdala representation of the aversive cue during observational conditioning. Selective inhibition of the ACC→BLA projection impaired acquisition, but not expression, of observational fear conditioning. We show that information derived from observation about the aversive value of the cue is transmitted from the ACC to the BLA and that this routing of information is critically instructive for observational fear conditioning. Video Abstract: [Figure presented] For an individual to watch another's experience and learn from it, signals need to move from cortical neurons to the basolateral amygdala during detection and integration of the necessary social cues.NIMH (Grant R01-MH102441-01)NIA (Grant RF1-AG047661-01)NIDDK (Award DP2-DK-102256-01)NCCIH (Grant DP1-AT009925)NIH (Grants 1-R01-AG-050548-01, DP1-OD003646 and R01-GM104948

    Nutrient inputs and net ecosystem productivity in the mouth of the Magdalena River, Colombia

    Get PDF
    Nutrient inputs and biogeochemical cycles in estuaries are strongly influenced by river discharge and suspended particulate matter (SPM). We evaluated temporal differences in nutrient bioavailability and net ecosystem productivity (NEP) and analyzed the effect of SPM on nutrient availability and estuary NEP in the mouth of the Magdalena River, Colombia. In this study, we used the stratified Muddy LOICZ model. Calculated water residence times in the estuary were low (similar to 0.9-2.1 days), as were proportions of dissolved nitrogen (DIN) and phosphorus (DIP) forms (similar to 10-30%) in the total nutrient pool. Dissolved nutrient proportions displayed differences between seasons (transition period [June 2018] and wet [November 2018]), and between the upper and lower, density-stratified water layers. Nutrient adsorption and desorption, associated with SPM in the estuary, determined bioavailable nutrient concentrations. When SPM was incorporated in the Muddy LOICZ model, the output indicated that NEP in the estuary was positive, i.e. gross primary productivity exceeded community respiration (autotrophic), and that there was net retention of nitrogen and phosphorus in the estuary. Primary producers in the autotmphic ecosystem fix sufficient carbon to supply higher tmphic levels. Prevalence of fine sediment with high organic matter (OM) content in the Magdalena River, along with turbulence that results in vertical water column mixing, suggest conditions conducive to flocculation. This investigation highlights the importance of the Magdalena River mouth in the transport and processing of sediments and nutrients being discharged to the Caribbean Sea.ColcienciasDepartamento Administrativo de Ciencia, Tecnologia e Innovacion Colciencias [727]Foundation for the promotion of research and technology (BanRepublica)info:eu-repo/semantics/publishedVersio
    corecore