32 research outputs found

    Femtosecond Covariance Spectroscopy

    Get PDF
    The success of non-linear optics relies largely on pulse-to-pulse consistency. In contrast, covariance based techniques used in photoionization electron spectroscopy and mass spectrometry have shown that wealth of information can be extracted from noise that is lost when averaging multiple measurements. Here, we apply covariance based detection to nonlinear optical spectroscopy, and show that noise in a femtosecond laser is not necessarily a liability to be mitigated, but can act as a unique and powerful asset. As a proof of principle we apply this approach to the process of stimulated Raman scattering in alpha-quartz. Our results demonstrate how nonlinear processes in the sample can encode correlations between the spectral components of ultrashort pulses with uncorrelated stochastic fluctuations. This in turn provides richer information compared to the standard non-linear optics techniques that are based on averages over many repetitions with well-behaved laser pulses. These proof-of-principle results suggest that covariance based nonlinear spectroscopy will improve the applicability of fs non-linear spectroscopy in wavelength ranges where stable, transform limited pulses are not available such as, for example, x-ray free electron lasers which naturally have spectrally noisy pulses ideally suited for this approach

    Transient measurement of phononic states with covariance-based stochastic spectroscopy

    Get PDF
    We present a novel approach to transient Raman spectroscopy, which combines stochastic probe pulses and a covariance-based detection to measure stimulated Raman signals in alpha-quartz. A coherent broadband pump is used to simultaneously impulsively excite a range of different phonon modes, and the phase, amplitude, and energy of each mode are independently recovered as a function of the pump–probe delay by a noisy-probe and covariance-based analysis. Our experimental results and the associated theoretical description demonstrate the feasibility of 2D-Raman experiments based on the stochastic-probe schemes, with new capabilities not available in equivalent mean-value-based 2D-Raman techniques. This work unlocks the gate for nonlinear spectroscopies to capitalize on the information hidden within the noise and overlooked by a mean-value analysis

    Cognitive performance in healthy older adults relates to spontaneous switching between states of functional connectivity during rest

    Get PDF
    Growing evidence has shown that brain activity at rest slowly wanders through a repertoire of different states, where whole-brain functional connectivity (FC) temporarily settles into distinct FC patterns. Nevertheless, the functional role of resting-state activity remains unclear. Here, we investigate how the switching behavior of resting-state FC relates with cognitive performance in healthy older adults. We analyse resting-state fMRI data from 98 healthy adults previously categorized as being among the best or among the worst performers in a cohort study of >1000 subjects aged 50+ who underwent neuropsychological assessment. We use a novel approach focusing on the dominant FC pattern captured by the leading eigenvector of dynamic FC matrices. Recurrent FC patterns - or states - are detected and characterized in terms of lifetime, probability of occurrence and switching profiles. We find that poorer cognitive performance is associated with weaker FC temporal similarity together with altered switching between FC states. These results provide new evidence linking the switching dynamics of FC during rest with cognitive performance in later life, reinforcing the functional role of resting-state activity for effective cognitive processing.This project was financed by the Fundação Calouste Gulbenkian (Portugal) (Contract grant number: P-139977; project “Better mental health during ageing based on temporal prediction of individual brain ageing trajectories (TEMPO)”), co-financed by Portuguese North Regional Operational Program (ON.2) under the National Strategic Reference Framework (QREN), through the European Regional Development Fund (FEDER) as well as the Projecto Estratégico co-funded by FCT (PEst-C/SAU/LA0026-/2013) and the European Regional Development Fund COMPETE (FCOMP-01-0124-FEDER-037298) and under the scope of the project NORTE-01-0145-FEDER-000013, supported by the Northern Portugal Regional Operational Programme (NORTE 2020) under the Portugal 2020 Partnership Agreement through the European Regional Development Fundinfo:eu-repo/semantics/publishedVersio

    Failure to report as a breach of moral and professional expectation

    Get PDF
    Cases of poor care have been documented across the world. Contrary to professional requirements, evidence indicates that these sometimes go unaddressed. For patients the outcomes of this inaction are invariably negative. Previous work has either focused on why poor care occurs and what might be done to prevent it, or on the reasons why those who are witness to it find it difficult to raise their concerns. Here we build on this work but specifically foreground the responsibilities of registrants and students who witness poor care. Acknowledging the challenges associated with raising concerns, we make the case that failure to address poor care is a breach of moral expectation, professional requirement and sometimes, legal frameworks. We argue that reporting will be more likely to take place if those who wish to enter the profession have a realistic view of the challenges they may encounter. When nurses are provided with robust and applied education on ethics, when ‘real-world’ cases and exemplars are used in practice and when steps are taken to develop and encourage individual moral courage, we may begin to see positive change. Ultimately however, significant change is only likely to take place where practice cultures invite and welcome feedback, promote critical reflection, and where strong, clear leadership support is shown by those in positions of influence across organisations

    Variability in the analysis of a single neuroimaging dataset by many teams

    Get PDF
    Data analysis workflows in many scientific domains have become increasingly complex and flexible. To assess the impact of this flexibility on functional magnetic resonance imaging (fMRI) results, the same dataset was independently analyzed by 70 teams, testing nine ex-ante hypotheses. The flexibility of analytic approaches is exemplified by the fact that no two teams chose identical workflows to analyze the data. This flexibility resulted in sizeable variation in hypothesis test results, even for teams whose statistical maps were highly correlated at intermediate stages of their analysis pipeline. Variation in reported results was related to several aspects of analysis methodology. Importantly, meta-analytic approaches that aggregated information across teams yielded significant consensus in activated regions across teams. Furthermore, prediction markets of researchers in the field revealed an overestimation of the likelihood of significant findings, even by researchers with direct knowledge of the dataset. Our findings show that analytic flexibility can have substantial effects on scientific conclusions, and demonstrate factors related to variability in fMRI. The results emphasize the importance of validating and sharing complex analysis workflows, and demonstrate the need for multiple analyses of the same data. Potential approaches to mitigate issues related to analytical variability are discussed

    Variability in the analysis of a single neuroimaging dataset by many teams

    Get PDF
    Data analysis workflows in many scientific domains have become increasingly complex and flexible. To assess the impact of this flexibility on functional magnetic resonance imaging (fMRI) results, the same dataset was independently analyzed by 70 teams, testing nine ex-ante hypotheses. The flexibility of analytic approaches is exemplified by the fact that no two teams chose identical workflows to analyze the data. This flexibility resulted in sizeable variation in hypothesis test results, even for teams whose statistical maps were highly correlated at intermediate stages of their analysis pipeline. Variation in reported results was related to several aspects of analysis methodology. Importantly, meta-analytic approaches that aggregated information across teams yielded significant consensus in activated regions across teams. Furthermore, prediction markets of researchers in the field revealed an overestimation of the likelihood of significant findings, even by researchers with direct knowledge of the dataset. Our findings show that analytic flexibility can have substantial effects on scientific conclusions, and demonstrate factors related to variability in fMRI. The results emphasize the importance of validating and sharing complex analysis workflows, and demonstrate the need for multiple analyses of the same data. Potential approaches to mitigate issues related to analytical variability are discussed

    The Open Brain Consent: Informing research participants and obtaining consent to share brain imaging data

    Get PDF
    Having the means to share research data openly is essential to modern science. For human research, a key aspect in this endeavor is obtaining consent from participants, not just to take part in a study, which is a basic ethical principle, but also to share their data with the scientific community. To ensure that the participants' privacy is respected, national and/or supranational regulations and laws are in place. It is, however, not always clear to researchers what the implications of those are, nor how to comply with them. The Open Brain Consent (https://open-brain-consent.readthedocs.io) is an international initiative that aims to provide researchers in the brain imaging community with information about data sharing options and tools. We present here a short history of this project and its latest developments, and share pointers to consent forms, including a template consent form that is compliant with the EU general data protection regulation. We also share pointers to an associated data user agreement that is not only useful in the EU context, but also for any researchers dealing with personal (clinical) data elsewhere

    Time-resolved multimode heterodyne detection for dissecting coherent states of matter

    Get PDF
    Unveiling and controlling the time evolution of the momentum and position of low energy excitations such as phonons, magnons, and electronic excitation is the key to attain coherently driven new functionalities of materials. Here we report the implementation of femtosecond time- and frequency-resolved multimode heterodyne detection and show that it allows for independent measurement of the time evolution of the position and momentum of the atoms in coherent vibrational states in \u3b1-quartz. The time dependence of the probe field quadratures reveals that their amplitude is maximally changed when the atoms have maximum momentum, while their phase encodes a different information and evolves proportionally to the instantaneous atomic positon. We stress that this methodology, providing the mean to map both momentum and position in one optical observable, may be of relevance for both quantum information technologies and time-domain studies on complex materials

    Visible pump-mid infrared pump-broadband probe: Development and characterization of a three-pulse setup for single-shot ultrafast spectroscopy at 50 kHz

    Get PDF
    We report here an experimental setup to perform three-pulse pump-probe measurements over a wide wavelength and temperature range. By combining two pump pulses in the visible (650 nm-900 nm) and mid-IR (5 \u3bcm-20 \u3bcm) range, with a broadband supercontinuum white-light probe, our apparatus enables both the combined selective excitation of different material degrees of freedom and a full time-dependent reconstruction of the non-equilibrium dielectric function of the sample. We describe here the optical setup, the cryogenic sample environment, and the custom-made acquisition electronics capable of referenced single-pulse detection of broadband spectra at the maximum repetition rate of 50 kHz, achieving a sensitivity of the order of 10-4 over an integration time of 1 s. We demonstrate the performance of the setup by reporting data on a mid-IR pump, optical push, and broadband probe in a single crystal of Bi2Sr2Y0.08Ca0.92Cu2O8+\u3b4 across the superconducting and pseudogap phases
    corecore