33 research outputs found

    New Constraints on the Evolution of the Inner Northern Apennines by K-Ar Dating of Late Miocene-Early Pliocene Compression on the Island of Elba, Italy

    Get PDF
    The Northern Apennines (NA) orogenic wedge formed during Oligocene-Miocene convergence and westward subduction of Adria beneath the European Plate. Extension ensued in the Mid-Late Miocene in response to Adria roll-back, causing opening of the back-arc Northern Tyrrhenian Sea. Whether extension continues uninterrupted since the Mid-Late Miocene or it was punctuated by short-lived compressional events, remains, however, uncertain. We used the K-Ar method to date a set of brittle-ductile and brittle deformation zones from the Island of Elba to contribute to this debate. We dated the low-angle Zuccale Fault (ZF), the Capo Norsi-Monte Arco Thrust (CN-MAT), and the Calanchiole Shear Zone (CSZ). The CN-MAT and CSZ are moderately west dipping, top-to-the-east thrusts in the immediate footwall of the ZF. The CSZ slipped 6.14 ± 0.64 Ma (<0.1 μm fraction) and the CN-MAT 4.90 ± 0.27 Ma ago (<0.4 μm fraction). The ZF, although cutting the two other faults, yielded an older age of 7.58 ± 0.11 Ma (<0.1 μm fraction). The ZF gouge, however, contains an illitic detrital contaminant from the Paleozoic age flysch deformed in its hanging wall and the age thus is a maximum faulting age. Removal of ~1% of a 300-Ma-old contaminant brings the ZF faulting age to <4.90 Ma. Our results provide the first direct dating of brittle deformation in the Apennines, constraining Late Miocene-Early Pliocene regional compression. They call for a refinement of current NA geodynamic models in the framework of the Northern Tyrrhenian Sea extension

    Harnessing AI and computing to advance climate modelling and prediction

    Get PDF
    There are contrasting views on how to produce the accurate predictions that are needed to guide climate change adaptation. Here, we argue for harnessing artificial intelligence, building on domain-specific knowledge and generating ensembles of moderately high-resolution (10–50 km) climate simulations as anchors for detailed hazard models

    The thick-bedded tail of turbidite thickness distribution as a proxy for flow confinement: examples from Tertiary basins of central and northern Apennines (Italy)

    Get PDF
    This study reviews the thickness statistics of non-channelized turbidites from four tertiary basins of Central-Northern Apennines (Italy), where bed geometry and sedimentary character have been previously assessed. Though very different in terms of size and, arguably, character of feeder system, these basins share a common stratigraphic evolution consisting in transition from an early ponded to a late unconfined setting of deposition. Based on comparison of thickness subsets from diverse locations and stratigraphic heights within the studied turbidite fills, this paper seeks to answer the following questions: i) how data collection procedures and field operational constraints (e.g. measure location, outcrop quality, use of thicknesses data from single vs. multiple correlative sections, stratigraphic thickness of the study interval) can affect statistics of sample data? ii) how depositional controls of confined vs. unconfined turbidite basins can result in different thickness-frequency distributions?; and iii) is there in thickness statistics a ‘flow confinement’ signature which can be used to distinguish between confined and unconfined turbidites? Results suggest that: i) best practices of data collection are crucial to a meaningful interpretation of sample data statistics, especially in presence of stratigraphic and spatial trends of turbidite bed thickness; ii) a systematic bias against cm-thick Tcd Bouma sequence turbidites exists in sample data, which can result in the low-end tail of empirical thickness-frequency distributions to depart significantly from the actual distribution of turbidite thickness; and iii) thickness statistics of beds starting with a basal Ta/Tb Bouma division bear a coherent relationship to the transition from ponded to unconfined depositional settings, consisting in reduction of variance and mean and, consequently, parameters, or even type, of best fit model distribution. This research highlights the role of flow stripping, sediment by-pass and bed geometry in altering the initial thickness distribution of ponded turbidites and suggests how fully ponded mini-basins represent the ideal setting for further research linking turbidite thickness statistics and frequency distribution of parent flow volumes

    MINDS. The detection of 13^{13}CO2_{2} with JWST-MIRI indicates abundant CO2_{2} in a protoplanetary disk

    Get PDF
    We present JWST-MIRI MRS spectra of the protoplanetary disk around the low-mass T Tauri star GW Lup from the MIRI mid-INfrared Disk Survey (MINDS) GTO program. Emission from 12^{12}CO2_{2}, 13^{13}CO2_{2}, H2_{2}O, HCN, C2_{2}H2_{2}, and OH is identified with 13^{13}CO2_{2} being detected for the first time in a protoplanetary disk. We characterize the chemical and physical conditions in the inner few au of the GW Lup disk using these molecules as probes. The spectral resolution of JWST-MIRI MRS paired with high signal-to-noise data is essential to identify these species and determine their column densities and temperatures. The QQ-branches of these molecules, including those of hot-bands, are particularly sensitive to temperature and column density. We find that the 12^{12}CO2_{2} emission in the GW Lup disk is coming from optically thick emission at a temperature of \sim400 K. 13^{13}CO2_{2} is optically thinner and based on a lower temperature of \sim325 K, may be tracing deeper into the disk and/or a larger emitting radius than 12^{12}CO2_{2}. The derived NCO2N_{\rm{CO_{2}}}/NH2ON_{\rm{H_{2}O}} ratio is orders of magnitude higher than previously derived for GW Lup and other targets based on \textit{Spitzer}-IRS data. This high column density ratio may be due to an inner cavity with a radius in between the H2_{2}O and CO2_{2} snowlines and/or an overall lower disk temperature. This paper demonstrates the unique ability of JWST to probe inner disk structures and chemistry through weak, previously unseen molecular features.Comment: 15 pages, 10 figures. Accepted to ApJ

    Contrasting styles of (U)HP rock exhumation along the Cenozoic Adria-Europe plate boundary (Western Alps, Calabria, Corsica)

    Get PDF
    Since the first discovery of ultrahigh pressure (UHP) rocks 30 years ago in the Western Alps, the mechanisms for exhumation of (U)HP terranes worldwide are still debated. In the western Mediterranean, the presently accepted model of synconvergent exhumation (e.g., the channel-flow model) is in conflict with parts of the geologic record. We synthesize regional geologic data and present alternative exhumation mechanisms that consider the role of divergence within subduction zones. These mechanisms, i.e., (i) the motion of the upper plate away from the trench and (ii) the rollback of the lower plate, are discussed in detail with particular reference to the Cenozoic Adria-Europe plate boundary, and along three different transects (Western Alps, Calabria-Sardinia, and Corsica-Northern Apennines). In the Western Alps, (U)HP rocks were exhumed from the greatest depth at the rear of the accretionary wedge during motion of the upper plate away from the trench. Exhumation was extremely fast, and associated with very low geothermal gradients. In Calabria, HP rocks were exhumed from shallower depths and at lower rates during rollback of the Adriatic plate, with repeated exhumation pulses progressively younging toward the foreland. Both mechanisms were active to create boundary divergence along the Corsica-Northern Apennines transect, where European southeastward subduction was progressively replaced along strike by Adriatic northwestward subduction. The tectonic scenario depicted for the Western Alps trench during Eocene exhumation of (U)HP rocks correlates well with present-day eastern Papua New Guinea, which is presented as a modern analog of the Paleogene Adria-Europe plate boundary

    Eddy-Mixed Layer Interactions in the Ocean

    No full text
    The oceanic surface mixed layer is where communication takes place between the oceanic reservoir of heat, freshwater, and carbon dioxide, and the overlying atmosphere in which we live. The exchange of properties and their changes in time and space greatly influence not only the climate state, but also biological productivity, sea level, and ice coverage, to name a few. Thus, knowledge and accurate representation of the processes controlling the dynamics of the mixed layer are vital if we are to understand the coupled ocean-atmosphere system and develop a quantitative theory of it. This field is ripe for new investigation, as new observations are revealing the full complexity of the dynamical behavior of this region of the ocean.National Science Foundation (U.S.) (OCE02-4152)National Science Foundation (U.S.) (OCE03-36755

    Improved design-oriented analytical modelling of switched reluctance machines based on Fröhlich-Kennelly equations

    No full text
    The need to reduce computational burden in the preliminary design stage of switched reluctance machines is fostering the interest in design-oriented analytical modelling. To this end, this work proposes a novel design-oriented analytical model that comprises two main parts, each of them containing an original scientific contribution: 1) a new interpolation technique for the flux loci based on 2nd-order Fr¨ohlich-Kennelly equations, and 2) an analytical model that calculates flux linkage in partial overlap and saturated conditions. The model is validated against finite element analyses of four switched reluctance machines and the experimental results of a physical prototype. Finally, an indepth discussion on the use, accuracy and limitations of proposed analytical model is provided
    corecore