150 research outputs found

    CONDENSED TANNINS INTERACTION WITH AND MODIFICATION OF WHEAT GLUTEN PROTEINS

    Get PDF
    Proanthocyanidins (PA) strongly complex proteins, which could be exploited in food systems to modify protein polymer structures and their functionality to benefit nutrition and health. Wheat is widely consumed, and its gluten proteins are structurally favorable for interaction with PA. In this work, we investigated effect of PA of different MW on gluten protein rheology and film properties, and assessed the mechanisms behind these interactions. Polymeric PA from sorghum (mean degree of polymerization, mDP 19.5) dramatically strengthened wheat gluten; e.g., at 2.5 mg/g flour, PA doubled insoluble polymeric protein (IPP) in weak gluten flour, increased mix time by 75% and dough elasticity by 29%. Oligomeric PA from grape seed (mDP 8.3) was less effective (increased IPP by 75% and dough elasticity by 16%). Uniquely for a gluten strengthening agent, PA did not decrease dough extensibility. Polymeric PA increased gluten film strength (e.g., at 10 mg/g gluten, force to extend was 2.2X greater than control without reduced extensibility). Thus, PA may improve gluten film flexibility and structural integrity. Polymeric PA also significantly (p < 0.05) increased gluten film stability to protease enzyme degradation versus tannic acid and control, which could allow for targeted delivery of micronutrients in the gastrointestinal tract. Polymeric and oligomeric PA had equilibrium dissociation constants of 0.6 and 2.1 mol PA/mol of glutenins, respectively, indicating polymeric PA interacted with glutenins more efficiently; a similar effect was seen in gliadins. Compared to the control, polymeric PA at 30 mg/g protein decreased soluble glutenins (31%) and gliadins (20%). Within glutenins, polymeric PA decreased soluble high molecular weight glutenin subunits (HMW-GS) more so than low MW-GS (79 vs 6%) and further reduced solubility of the larger x-type HMW-GS more than y-type. Similarly, polymeric PA decreased solubility of the largest ω-gliadin fraction the most, suggesting increased complexing efficiency with higher MW gluten fractions. Surface hydrophobicity of glutenins, but not gliadins, was reduced by PA (69 – 75% vs control). Overall evidence indicates PA complexed glutenins by hydrophobic interaction and hydrogen bonding, but gliadins mainly by hydrogen bonding

    Production of He-4 and (4) in Pb-Pb collisions at root(NN)-N-S=2.76 TeV at the LHC

    Get PDF
    Results on the production of He-4 and (4) nuclei in Pb-Pb collisions at root(NN)-N-S = 2.76 TeV in the rapidity range vertical bar y vertical bar <1, using the ALICE detector, are presented in this paper. The rapidity densities corresponding to 0-10% central events are found to be dN/dy4(He) = (0.8 +/- 0.4 (stat) +/- 0.3 (syst)) x 10(-6) and dN/dy4 = (1.1 +/- 0.4 (stat) +/- 0.2 (syst)) x 10(-6), respectively. This is in agreement with the statistical thermal model expectation assuming the same chemical freeze-out temperature (T-chem = 156 MeV) as for light hadrons. The measured ratio of (4)/He-4 is 1.4 +/- 0.8 (stat) +/- 0.5 (syst). (C) 2018 Published by Elsevier B.V.Peer reviewe

    CONDENSED TANNINS INTERACTION WITH AND MODIFICATION OF WHEAT GLUTEN PROTEINS

    Get PDF
    Proanthocyanidins (PA) strongly complex proteins, which could be exploited in food systems to modify protein polymer structures and their functionality to benefit nutrition and health. Wheat is widely consumed, and its gluten proteins are structurally favorable for interaction with PA. In this work, we investigated effect of PA of different MW on gluten protein rheology and film properties, and assessed the mechanisms behind these interactions. Polymeric PA from sorghum (mean degree of polymerization, mDP 19.5) dramatically strengthened wheat gluten; e.g., at 2.5 mg/g flour, PA doubled insoluble polymeric protein (IPP) in weak gluten flour, increased mix time by 75% and dough elasticity by 29%. Oligomeric PA from grape seed (mDP 8.3) was less effective (increased IPP by 75% and dough elasticity by 16%). Uniquely for a gluten strengthening agent, PA did not decrease dough extensibility. Polymeric PA increased gluten film strength (e.g., at 10 mg/g gluten, force to extend was 2.2X greater than control without reduced extensibility). Thus, PA may improve gluten film flexibility and structural integrity. Polymeric PA also significantly (p < 0.05) increased gluten film stability to protease enzyme degradation versus tannic acid and control, which could allow for targeted delivery of micronutrients in the gastrointestinal tract. Polymeric and oligomeric PA had equilibrium dissociation constants of 0.6 and 2.1 mol PA/mol of glutenins, respectively, indicating polymeric PA interacted with glutenins more efficiently; a similar effect was seen in gliadins. Compared to the control, polymeric PA at 30 mg/g protein decreased soluble glutenins (31%) and gliadins (20%). Within glutenins, polymeric PA decreased soluble high molecular weight glutenin subunits (HMW-GS) more so than low MW-GS (79 vs 6%) and further reduced solubility of the larger x-type HMW-GS more than y-type. Similarly, polymeric PA decreased solubility of the largest ω-gliadin fraction the most, suggesting increased complexing efficiency with higher MW gluten fractions. Surface hydrophobicity of glutenins, but not gliadins, was reduced by PA (69 – 75% vs control). Overall evidence indicates PA complexed glutenins by hydrophobic interaction and hydrogen bonding, but gliadins mainly by hydrogen bonding

    Analysis of the apparent nuclear modification in peripheral Pb–Pb collisions at 5.02 TeV

    No full text
    International audienceCharged-particle spectra at midrapidity are measured in Pb–Pb collisions at the centre-of-mass energy per nucleon–nucleon pair sNN=5.02 TeV and presented in centrality classes ranging from most central (0–5%) to most peripheral (95–100%) collisions. Possible medium effects are quantified using the nuclear modification factor ( RAA ) by comparing the measured spectra with those from proton–proton collisions, scaled by the number of independent nucleon–nucleon collisions obtained from a Glauber model. At large transverse momenta ( 8<pT<20GeV/c ), the average RAA is found to increase from about 0.15 in 0–5% central to a maximum value of about 0.8 in 75–85% peripheral collisions, beyond which it falls off strongly to below 0.2 for the most peripheral collisions. Furthermore, RAA initially exhibits a positive slope as a function of pT in the 8–20 GeV/c interval, while for collisions beyond the 80% class the slope is negative. To reduce uncertainties related to event selection and normalization, we also provide the ratio of RAA in adjacent centrality intervals. Our results in peripheral collisions are consistent with a PYTHIA-based model without nuclear modification, demonstrating that biases caused by the event selection and collision geometry can lead to the apparent suppression in peripheral collisions. This explains the unintuitive observation that RAA is below unity in peripheral Pb–Pb, but equal to unity in minimum-bias p–Pb collisions despite similar charged-particle multiplicities

    Anisotropic flow of identified particles in Pb-Pb collisions at sNN=5.02 {\sqrt{s}}_{\mathrm{NN}}=5.02 TeV

    No full text
    The elliptic (v2_{2}), triangular (v3_{3}), and quadrangular (v4_{4}) flow coefficients of π±^{±}, K±^{±}, p+p,Λ+Λ,KS0 \mathrm{p}+\overline{\mathrm{p}},\kern0.5em \Lambda +\overline{\Lambda},\kern0.5em {\mathrm{K}}_{\mathrm{S}}^0 , and the ϕ-meson are measured in Pb-Pb collisions at sNN=5.02 {\sqrt{s}}_{\mathrm{NN}}=5.02 TeV. Results obtained with the scalar product method are reported for the rapidity range |y| < 0.5 as a function of transverse momentum, pT_{T}, at different collision centrality intervals between 0–70%, including ultra-central (0–1%) collisions for π±^{±}, K±^{±}, and p+p \mathrm{p}+\overline{\mathrm{p}} . For pT_{T} < 3 GeV/c, the flow coefficients exhibit a particle mass dependence. At intermediate transverse momenta (3 < pT_{T} < 8–10 GeV/c), particles show an approximate grouping according to their type (i.e., mesons and baryons). The ϕ-meson v2_{2}, which tests both particle mass dependence and type scaling, follows p+p \mathrm{p}+\overline{\mathrm{p}} v2_{2} at low pT_{T} and π±^{±} v2_{2} at intermediate pT_{T}. The evolution of the shape of vn_{n}(pT_{T}) as a function of centrality and harmonic number n is studied for the various particle species. Flow coefficients of π±^{±}, K±^{±}, and p+p \mathrm{p}+\overline{\mathrm{p}} for pT_{T} < 3 GeV/c are compared to iEBE-VISHNU and MUSIC hydrodynamical calculations coupled to a hadronic cascade model (UrQMD). The iEBE-VISHNU calculations describe the results fairly well for pT_{T} < 2.5 GeV/c, while MUSIC calculations reproduce the measurements for pT_{T} < 1 GeV/c. A comparison to vn_{n} coefficients measured in Pb-Pb collisions at sNN=2.76 \sqrt{s_{\mathrm{NN}}}=2.76 TeV is also provided

    Elliptic flow of electrons from heavy-flavour hadron decays at mid-rapidity in Pb–Pb collisions at √sNN = 2.76 TeV

    No full text
    The elliptic flow of electrons from heavy-flavour hadron decays at mid-rapidity (|y| < 0.7) is measured in Pb-Pb collisions at sNN−−−√=2.76 TeV with ALICE at the LHC. The particle azimuthal distribution with respect to the reaction plane can be parametrized with a Fourier expansion, where the second coefficient (v2) represents the elliptic flow. The v2 coefficient of inclusive electrons is measured in three centrality classes (0-10%, 10-20% and 20-40%) with the event plane and the scalar product methods in the transverse momentum (pT) intervals 0.5-13 GeV/c and 0.5-8 GeV/c, respectively. After subtracting the background, mainly from photon conversions and Dalitz decays of neutral mesons, a positive v2 of electrons from heavy-flavour hadron decays is observed in all centrality classes, with a maximum significance of 5.9σ in the interval 2< pT < 2.5 GeV/c in semi-central collisions (20-40%). The value of v2 decreases towards more central collisions at low and intermediate pT (0.5 < pT < 3 GeV/c). The v2 of electrons from heavy-flavour hadron decays at mid-rapidity is found to be similar to the one of muons from heavy-flavour hadron decays at forward rapidity (2.5 < y < 4). The results are described within uncertainties by model calculations including substantial elastic interactions of heavy quarks with an expanding strongly-interacting medium

    Measurement of electrons from beauty-hadron decays in p-Pb collisions at sNN=5.02 \sqrt{s_{\mathrm{NN}}}=5.02 TeV and Pb-Pb collisions at sNN=2.76 \sqrt{s_{\mathrm{NN}}}=2.76 TeV

    No full text
    The production of beauty hadrons was measured via semi-leptonic decays at mid-rapidity with the ALICE detector at the LHC in the transverse momentum interval 1<pT_{T} < 8 GeV/c in minimum-bias p-Pb collisions at sNN=5.02 \sqrt{s_{\mathrm{NN}}}=5.02 TeV and in 1.3 < pT_{T} < 8 GeV/c in the 20% most central Pb-Pb collisions at sNN=2.76 \sqrt{s_{\mathrm{NN}}}=2.76 TeV. The pp reference spectra at sNN=5.02 \sqrt{s_{\mathrm{NN}}}=5.02 TeV and s=2.76 \sqrt{s}=2.76 TeV, needed for the calculation of the nuclear modification factors RpPb_{pPb} and RPbPb_{PbPb}, were obtained by a pQCD-driven scaling of the cross section of electrons from beauty-hadron decays measured at s=7 \sqrt{s}=7 TeV. In the pT_{T} interval 3 < pT_{T} < 8 GeV/c, a suppression of the yield of electrons from beauty-hadron decays is observed in Pb-Pb compared to pp collisions. Towards lower pT_{T}, the RPbPb_{PbPb} values increase with large systematic uncertainties. The RpPb_{pPb} is consistent with unity within systematic uncertainties and is well described by theoretical calculations that include cold nuclear matter effects in p-Pb collisions. The measured RpPb_{pPb} and these calculations indicate that cold nuclear matter effects are small at high transverse momentum also in Pb-Pb collisions. Therefore, the observed reduction of RPbPb_{PbPb} below unity at high pT_{T} may be ascribed to an effect of the hot and dense medium formed in Pb-Pb collisions

    Production of Σ(1385)± and Ξ(1530)0 in p–Pb collisions at √sNN = 5.02 TeV

    No full text
    The transverse momentum distributions of the strange and double-strange hyperon resonances (Σ(1385)±, Ξ(1530)0) produced in p-Pb collisions at sNN−−−√=5.02 TeV were measured in the rapidity range −0.5<yCMS<0 for event classes corresponding to different charged-particle multiplicity densities, ⟨dNch/dηlab⟩. The mean transverse momentum values are presented as a function of ⟨dNch/dηlab⟩, as well as a function of the particle masses and compared with previous results on hyperon production. The integrated yield ratios of excited to ground-state hyperons are constant as a function of ⟨dNch/dηlab⟩. The equivalent ratios to pions exhibit an increase with ⟨dNch/dηlab⟩, depending on their strangeness content

    π0\pi ^{0} and η\eta meson production in proton-proton collisions at s=8\sqrt{s}=8 TeV

    No full text
    An invariant differential cross section measurement of inclusive π0\pi ^{0} and η\eta meson production at mid-rapidity in pp collisions at s=8\sqrt{s}=8  TeV was carried out by the ALICE experiment at the LHC. The spectra of π0\pi ^{0} and η\eta mesons were measured in transverse momentum ranges of 0.33.50.33.5    GeV/c \text{ GeV/c } . However, a deviation from this empirical scaling rule is observed for transverse momenta below p T <3.5p_{ \text{ T }} <3.5    GeV/c \text{ GeV/c } in the η/π0\eta /\pi ^0 ratio with a significance of 6.2σ6.2\sigma
    corecore