360 research outputs found

    Active and Passive Fields in Turbulent Transport: the Role of Statistically Preserved Structures

    Full text link
    We have recently proposed that the statistics of active fields (which affect the velocity field itself) in well-developed turbulence are also dominated by the Statistically Preserved Structures of auxiliary passive fields which are advected by the same velocity field. The Statistically Preserved Structures are eigenmodes of eigenvalue 1 of an appropriate propagator of the decaying (unforced) passive field, or equivalently, the zero modes of a related operator. In this paper we investigate further this surprising finding via two examples, one akin to turbulent convection in which the temperature is the active scalar, and the other akin to magneto-hydrodynamics in which the magnetic field is the active vector. In the first example, all the even correlation functions of the active and passive fields exhibit identical scaling behavior. The second example appears at first sight to be a counter-example: the statistical objects of the active and passive fields have entirely different scaling exponents. We demonstrate nevertheless that the Statistically Preserved Structures of the passive vector dominate again the statistics of the active field, except that due to a dynamical conservation law the amplitude of the leading zero mode cancels exactly. The active vector is then dominated by the sub-leading zero mode of the passive vector. Our work thus suggests that the statistical properties of active fields in turbulence can be understood with the same generality as those of passive fields.Comment: 13 pages, 13 figures, submitted to Phys. Rev.

    Physics of Solar Prominences: I - Spectral Diagnostics and Non-LTE Modelling

    Full text link
    This review paper outlines background information and covers recent advances made via the analysis of spectra and images of prominence plasma and the increased sophistication of non-LTE (ie when there is a departure from Local Thermodynamic Equilibrium) radiative transfer models. We first describe the spectral inversion techniques that have been used to infer the plasma parameters important for the general properties of the prominence plasma in both its cool core and the hotter prominence-corona transition region. We also review studies devoted to the observation of bulk motions of the prominence plasma and to the determination of prominence mass. However, a simple inversion of spectroscopic data usually fails when the lines become optically thick at certain wavelengths. Therefore, complex non-LTE models become necessary. We thus present the basics of non-LTE radiative transfer theory and the associated multi-level radiative transfer problems. The main results of one- and two-dimensional models of the prominences and their fine-structures are presented. We then discuss the energy balance in various prominence models. Finally, we outline the outstanding observational and theoretical questions, and the directions for future progress in our understanding of solar prominences.Comment: 96 pages, 37 figures, Space Science Reviews. Some figures may have a better resolution in the published version. New version reflects minor changes brought after proof editin

    OX40L Inhibition suppresses KLH-driven immune responses in healthy volunteers: a randomized controlled trial demonstrating proof-of-pharmacology for KY1005

    Get PDF
    The safety, tolerability, immunogenicity, and pharmacokinetic (PK) profile of an anti-OX40L monoclonal antibody (KY1005, currently amlitelimab) were evaluated. Pharmacodynamic (PD) effects were explored using keyhole limpet hemocyanin (KLH) and tetanus toxoid (TT) immunizations. Sixty-four healthy male subjects (26.5 +/- 6.0 years) were randomized to single doses of 0.006, 0.018, or 0.05 mg/kg, or multiple doses of 0.15, 0.45, 1.35, 4, or 12 mg/kg KY1005, or placebo (6:2). Serum KY1005 concentrations were measured. Antibody responses upon KLH and TT immunizations and skin response upon intradermal KLH administration were performed. PD data were analyzed using repeated measures analysis of covariances (ANCOVAs) and post hoc exposure-response modeling. No serious adverse events occurred and all adverse events were temporary and of mild or moderate severity. A nonlinear increase in mean serum KY1005 concentrations was observed (median time to maximum concentration (T-max) similar to 4 hours, geometric mean terminal half-life (t1/2) similar to 24 days). Cutaneous blood perfusion (estimated difference (ED) -13.4 arbitrary unit (AU), 95% confidence interval (CI) -23.0 AU to -3.8 AU) and erythema quantified as average redness (ED -0.23 AU, 95% CI -0.35 AU to -0.11 AU) decreased after KY1005 treatment at doses of 0.45 mg/kg and above. Exposure-response analysis displayed a statistically significant treatment effect on anti-KLH antibody titers (IgG maximum effect (E-max) -0.58 AU, 95% CI -1.10 AU to -0.06 AU) and skin response (erythema E-max -0.20 AU, 95% CI -0.29 AU to -0.11 AU). Administration of KY1005 demonstrated an acceptable safety and tolerability profile and PK analyses displayed a nonlinear profile of KY1005. Despite the observed variability, skin challenge response after KY1005 treatment indicated pharmacological activity of KY1005. Therefore, KY1005 shows potential as a novel pharmacological treatment in immune-mediated disorders.Drug Delivery Technolog

    The state of the Martian climate

    Get PDF
    60°N was +2.0°C, relative to the 1981–2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes

    Observers and Locality in Everett Quantum Field Theory

    Full text link
    A model for measurement in collapse-free nonrelativistic fermionic quantum field theory is presented. In addition to local propagation and effectively-local interactions, the model incorporates explicit representations of localized observers, thus extending an earlier model of entanglement generation in Everett quantum field theory [M. A. Rubin, Found. Phys. 32, 1495-1523 (2002)]. Transformations of the field operators from the Heisenberg picture to the Deutsch-Hayden picture, involving fictitious auxiliary fields, establish the locality of the model. The model is applied to manifestly-local calculations of the results of measurements, using a type of sudden approximation and in the limit of massive systems in narrow-wavepacket states. Detection of the presence of a spin-1/2 system in a given spin state by a freely-moving two-state observer illustrates the features of the model and the nonperturbative computational methodology. With the help of perturbation theory the model is applied to a calculation of the quintessential "nonlocal" quantum phenomenon, spin correlations in the Einstein-Podolsky-Rosen-Bohm experiment.Comment: Some changes to introduction and discussion sections, typos corrected, conclusions unchanged. To appear in Foundations of Physic

    The SPTPoL extended cluster survey

    Get PDF
    We describe the observations and resultant galaxy cluster catalog from the 2770 deg2 SPTpol Extended Cluster Survey (SPT-ECS). Clusters are identified via the Sunyaev-Zel'dovich (SZ) effect and confirmed with a combination of archival and targeted follow-up data, making particular use of data from the Dark Energy Survey (DES). With incomplete follow-up we have confirmed as clusters 244 of 266 candidates at a detection significance Ο ≄ 5 and an additional 204 systems at 4 4 threshold, and 10% of their measured SZ flux. We associate SZ-selected clusters, from both SPT-ECS and the SPT-SZ survey, with clusters from the DES redMaPPer sample, and we find an offset distribution between the SZ center and central galaxy in general agreement with previous work, though with a larger fraction of clusters with significant offsets. Adopting a fixed Planck-like cosmology, we measure the optical richness-SZ mass (l - M) relation and find it to be 28% shallower than that from a weak-lensing analysis of the DES data-a difference significant at the 4σ level-with the relations intersecting at λ = 60. The SPT-ECS cluster sample will be particularly useful for studying the evolution of massive clusters and, in combination with DES lensing observations and the SPT-SZ cluster sample, will be an important component of future cosmological analyses

    Measurement of the azimuthal anisotropy of Y(1S) and Y(2S) mesons in PbPb collisions at √S^{S}NN = 5.02 TeV

    Get PDF
    The second-order Fourier coefficients (υ2_{2}) characterizing the azimuthal distributions of ΄(1S) and ΄(2S) mesons produced in PbPb collisions at sNN\sqrt{s_{NN}} = 5.02 TeV are studied. The ΄mesons are reconstructed in their dimuon decay channel, as measured by the CMS detector. The collected data set corresponds to an integrated luminosity of 1.7 nb−1^{-1}. The scalar product method is used to extract the υ2_{2} coefficients of the azimuthal distributions. Results are reported for the rapidity range |y| < 2.4, in the transverse momentum interval 0 < pT_{T} < 50 GeV/c, and in three centrality ranges of 10–30%, 30–50% and 50–90%. In contrast to the J/ψ mesons, the measured υ2_{2} values for the ΄ mesons are found to be consistent with zero
    • 

    corecore