1,057 research outputs found

    Photoassisted tunneling from free-standing GaAs thin films into metallic surfaces

    Full text link
    The tunnel photocurrent between a gold surface and a free-standing semiconducting thin film excited from the rear by above bandgap light has been measured as a function of applied bias, tunnel distance and excitation light power. The results are compared with the predictions of a model which includes the bias dependence of the tunnel barrier height and the bias-induced decrease of surface recombination velocity. It is found that i) the tunnel photocurrent from the conduction band dominates that from surface states. ii) At large tunnel distance the exponential bias dependence of the current is explained by that of the tunnel barrier height, while at small distance the change of surface recombination velocity is dominant

    Underground Neutrino Detectors for Particle and Astroparticle Science: the Giant Liquid Argon Charge Imaging ExpeRiment (GLACIER)

    Full text link
    The current focus of the CERN program is the Large Hadron Collider (LHC), however, CERN is engaged in long baseline neutrino physics with the CNGS project and supports T2K as recognized CERN RE13, and for good reasons: a number of observed phenomena in high-energy physics and cosmology lack their resolution within the Standard Model of particle physics; these puzzles include the origin of neutrino masses, CP-violation in the leptonic sector, and baryon asymmetry of the Universe. They will only partially be addressed at LHC. A positive measurement of sin22θ13>0.01\sin^22\theta_{13}>0.01 would certainly give a tremendous boost to neutrino physics by opening the possibility to study CP violation in the lepton sector and the determination of the neutrino mass hierarchy with upgraded conventional super-beams. These experiments (so called ``Phase II'') require, in addition to an upgraded beam power, next generation very massive neutrino detectors with excellent energy resolution and high detection efficiency in a wide neutrino energy range, to cover 1st and 2nd oscillation maxima, and excellent particle identification and π0\pi^0 background suppression. Two generations of large water Cherenkov detectors at Kamioka (Kamiokande and Super-Kamiokande) have been extremely successful. And there are good reasons to consider a third generation water Cherenkov detector with an order of magnitude larger mass than Super-Kamiokande for both non-accelerator (proton decay, supernovae, ...) and accelerator-based physics. On the other hand, a very massive underground liquid Argon detector of about 100 kton could represent a credible alternative for the precision measurements of ``Phase II'' and aim at significantly new results in neutrino astroparticle and non-accelerator-based particle physics (e.g. proton decay).Comment: 31 pages, 14 figure

    A First Search for coincident Gravitational Waves and High Energy Neutrinos using LIGO, Virgo and ANTARES data from 2007

    Get PDF
    We present the results of the first search for gravitational wave bursts associated with high energy neutrinos. Together, these messengers could reveal new, hidden sources that are not observed by conventional photon astronomy, particularly at high energy. Our search uses neutrinos detected by the underwater neutrino telescope ANTARES in its 5 line configuration during the period January - September 2007, which coincided with the fifth and first science runs of LIGO and Virgo, respectively. The LIGO-Virgo data were analysed for candidate gravitational-wave signals coincident in time and direction with the neutrino events. No significant coincident events were observed. We place limits on the density of joint high energy neutrino - gravitational wave emission events in the local universe, and compare them with densities of merger and core-collapse events.Comment: 19 pages, 8 figures, science summary page at http://www.ligo.org/science/Publication-S5LV_ANTARES/index.php. Public access area to figures, tables at https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=p120000

    The Evolution of Compact Binary Star Systems

    Get PDF
    We review the formation and evolution of compact binary stars consisting of white dwarfs (WDs), neutron stars (NSs), and black holes (BHs). Binary NSs and BHs are thought to be the primary astrophysical sources of gravitational waves (GWs) within the frequency band of ground-based detectors, while compact binaries of WDs are important sources of GWs at lower frequencies to be covered by space interferometers (LISA). Major uncertainties in the current understanding of properties of NSs and BHs most relevant to the GW studies are discussed, including the treatment of the natal kicks which compact stellar remnants acquire during the core collapse of massive stars and the common envelope phase of binary evolution. We discuss the coalescence rates of binary NSs and BHs and prospects for their detections, the formation and evolution of binary WDs and their observational manifestations. Special attention is given to AM CVn-stars -- compact binaries in which the Roche lobe is filled by another WD or a low-mass partially degenerate helium-star, as these stars are thought to be the best LISA verification binary GW sources.Comment: 105 pages, 18 figure

    Phenotypic Dissection of Bone Mineral Density Reveals Skeletal Site Specificity and Facilitates the Identification of Novel Loci in the Genetic Regulation of Bone Mass Attainment

    Get PDF
    Heritability of bone mineral density (BMD) varies across skeletal sites, reflecting different relative contributions of genetic and environmental influences. To quantify the degree to which common genetic variants tag and environmental factors influence BMD, at different sites, we estimated the genetic (rg) and residual (re) correlations between BMD measured at the upper limbs (UL-BMD), lower limbs (LL-BMD) and skull (SK-BMD), using total-body DXA scans of ~4,890 participants recruited by the Avon Longitudinal Study of Parents and their Children (ALSPAC). Point estimates of rg indicated that appendicular sites have a greater proportion of shared genetic architecture (LL-/UL-BMD rg = 0.78) between them, than with the skull (UL-/SK-BMD rg = 0.58 and LL-/SK-BMD rg = 0.43). Likewise, the residual correlation between BMD at appendicular sites (re = 0.55) was higher than the residual correlation between SK-BMD and BMD at appendicular sites (re = 0.20-0.24). To explore the basis fo

    Sintomas Cardiopulmonares Pós-COVID-19: Preditores e Características de Imagem de Pacientes após a Alta Hospitalar

    Get PDF
    Resumo Fundamento A maioria da evidência sobre o impacto da síndrome COVID pós-aguda (PACS, do inglês, post-acute COVID-19 syndrome) descreve sintomas individuais sem correlacioná-los com exames de imagens. Objetivos Avaliar sintomas cardiopulmonares, seus preditores e imagens relacionadas em pacientes com COVID-19 após alta hospitalar. Métodos Pacientes consecutivos, que sobreviveram à COVID-19, foram contatados 90 dias após a alta hospitalar. A equipe de desfechos clínicos (cega quanto aos dados durante a internação) elaborou um questionário estruturado avaliando sintomas e estado clínico. Uma análise multivariada foi realizada abordando a evolução da COVID-19, comorbidades, ansiedade, depressão, e estresse pós-traumático durante a internação, e reabilitação cardíaca após a alta. O nível de significância usado nas análises foi de 5%. Resultados Foram incluídos 480 pacientes (idade 59±14 anos, 67,5% do sexo masculino) que receberam alta hospitalar por COVID-19; 22,3% necessitaram de ventilação mecânica. A prevalência de pacientes com sintomas cardiopulmonares relacionados à PACS (dispneia, cansaço/fadiga, tosse e desconforto no peito) foi de 16,3%. Vários parâmetros de tomografia computadorizada do tórax e de ecocardiograma foram similares entre os pacientes com e sem sintomas cardiopulmonares. A análise multivariada mostrou que sintomas cardiopulmonares foram relacionados de maneira independente com sexo feminino (OR 3,023; IC95% 1,319-6,929), trombose venosa profunda durante a internação (OR 13,689; IC95% 1,069-175,304), nível elevado de troponina (OR 1,355; IC95% 1,048-1,751) e de proteína C reativa durante a internação (OR 1,060; IC95% 1,023-1,097) e depressão (OR 6,110; IC95% 2,254-16,558). Conclusão Os sintomas cardiopulmonares relacionados à PACS 90 dias após a alta hospitalar são comuns e multifatoriais. Além dos marcadores trombóticos, inflamatórios e de lesão miocárdica durante a internação, sexo feminino e depressão foram associados independentemente com sintomas cardiopulmonares relacionados à PACS. Esses resultados destacaram a necessidade de uma abordagem multifacetada direcionada a pacientes susceptíveis

    Loss of Genetic Redundancy in Reductive Genome Evolution

    Get PDF
    Biological systems evolved to be functionally robust in uncertain environments, but also highly adaptable. Such robustness is partly achieved by genetic redundancy, where the failure of a specific component through mutation or environmental challenge can be compensated by duplicate components capable of performing, to a limited extent, the same function. Highly variable environments require very robust systems. Conversely, predictable environments should not place a high selective value on robustness. Here we test this hypothesis by investigating the evolutionary dynamics of genetic redundancy in extremely reduced genomes, found mostly in intracellular parasites and endosymbionts. By combining data analysis with simulations of genome evolution we show that in the extensive gene loss suffered by reduced genomes there is a selective drive to keep the diversity of protein families while sacrificing paralogy. We show that this is not a by-product of the known drivers of genome reduction and that there is very limited convergence to a common core of families, indicating that the repertoire of protein families in reduced genomes is the result of historical contingency and niche-specific adaptations. We propose that our observations reflect a loss of genetic redundancy due to a decreased selection for robustness in a predictable environment

    Hospital service areas – a new tool for health care planning in Switzerland

    Get PDF
    BACKGROUND: The description of patient travel patterns and variations in health care utilization may guide a sound health care planning process. In order to accurately describe these differences across regions with homogeneous populations, small area analysis (SAA) has proved as a valuable tool to create appropriate area models. This paper presents the methodology to create and characterize population-based hospital service areas (HSAs) for Switzerland. METHODS: We employed federal hospital discharge data to perform a patient origin study using small area analysis. Each of 605 residential regions was assigned to one of 215 hospital provider regions where the most frequent number of discharges took place. HSAs were characterized geographically, demographically, and through health utilization indices and rates that describe hospital use. We introduced novel planning variables extracted from the patient origin study and investigated relationships among health utilization indices and rates to understand patient travel patterns for hospital use. Results were visualized as maps in a geographic information system (GIS). RESULTS: We obtained 100 HSAs using a patient origin matrix containing over four million discharges. HSAs had diverse demographic and geographic characteristics. Urban HSAs had above average population sizes, while mountainous HSAs were scarcely populated but larger in size. We found higher localization of care in urban HSAs and in mountainous HSAs. Half of the Swiss population lives in service areas where 65% of hospital care is provided by local hospitals. CONCLUSION: Health utilization indices and rates demonstrated patient travel patterns that merit more detailed analyses in light of political, infrastructural and developmental determinants. HSAs and health utilization indices provide valuable information for health care planning. They will be used to study variation phenomena in Swiss health care

    Digital Quantification of Human Eye Color Highlights Genetic Association of Three New Loci

    Get PDF
    Previous studies have successfully identified genetic variants in several genes associated with human iris (eye) color; however, they all used simplified categorical trait information. Here, we quantified continuous eye color variation into hue and saturation values using high-resolution digital full-eye photographs and conducted a genome-wide association study on 5,951 Dutch Europeans from the Rotterdam Study. Three new regions, 1q42.3, 17q25.3, and 21q22.13, were highlighted meeting the criterion for genome-wide statistically significant association. The latter two loci were replicated in 2,261 individuals from the UK and in 1,282 from Australia. The LYST gene at 1q42.3 and the DSCR9 gene at 21q22.13 serve as promising functional candidates. A model for predicting quantitative eye colors explained over 50% of trait variance in the Rotterdam Study. Over all our data exemplify that fine phenotyping is a useful strategy for finding genes involved in human complex traits
    corecore