The current focus of the CERN program is the Large Hadron Collider (LHC),
however, CERN is engaged in long baseline neutrino physics with the CNGS
project and supports T2K as recognized CERN RE13, and for good reasons: a
number of observed phenomena in high-energy physics and cosmology lack their
resolution within the Standard Model of particle physics; these puzzles include
the origin of neutrino masses, CP-violation in the leptonic sector, and baryon
asymmetry of the Universe. They will only partially be addressed at LHC. A
positive measurement of sin22θ13>0.01 would certainly give a
tremendous boost to neutrino physics by opening the possibility to study CP
violation in the lepton sector and the determination of the neutrino mass
hierarchy with upgraded conventional super-beams. These experiments (so called
``Phase II'') require, in addition to an upgraded beam power, next generation
very massive neutrino detectors with excellent energy resolution and high
detection efficiency in a wide neutrino energy range, to cover 1st and 2nd
oscillation maxima, and excellent particle identification and
π0 background suppression. Two generations of large water Cherenkov
detectors at Kamioka (Kamiokande and Super-Kamiokande) have been extremely
successful. And there are good reasons to consider a third generation water
Cherenkov detector with an order of magnitude larger mass than Super-Kamiokande
for both non-accelerator (proton decay, supernovae, ...) and accelerator-based
physics. On the other hand, a very massive underground liquid Argon detector of
about 100 kton could represent a credible alternative for the precision
measurements of ``Phase II'' and aim at significantly new results in neutrino
astroparticle and non-accelerator-based particle physics (e.g. proton decay).Comment: 31 pages, 14 figure