27 research outputs found

    A review on history of organic farming in the current changing context in Nepal

    Get PDF
    Worldwide, with the increase in awareness of health and environmental concerns, demand for organic agricultural products is increasing, however, its adoption in Nepal at the field level is minimal (0.30% of the total agricultural land area). Exploring the history of organic agriculture could answer, “why its growth, despite the increasing demand, is minimal?” The history of organic agriculture for commerce in Nepal is little known. This study thus explores the scope and history of commercial organic agriculture in Nepal. The paper identifies a few historical landmarks of organic agriculture; and while doing so, it describes the world history of organic agriculture. The study observed that a ‘pure’ form of organic agriculture in Nepal started in 1987, when an American research scholar established a commercial farm. Since then, it advanced until 1992, and then ‘merged’ with permaculture. The organic agriculture movement rejuvenated again in 2002 into the 10th five years plan. Much of the national policy documents on organic agriculture favored ‘income’ and perceived organic products as luxurious goods. As a result, much of the innovation in organic agriculture, government priorities, and people’s perception inclined towards earning dollars rather than environmental conservation and sustainability of the farming system. The movement of organic agriculture in Nepal deviated from its philosophical grounds and the government's priority increased on earnings, resulting in some myths in the Nepalese society on organic agriculture. All these factors caused minimal growth of organic agriculture, despite its great scope at national and international levels

    Electronic structure and estimation of Curie temperature in Ca\u3csub\u3e2\u3c/sub\u3eBIrO\u3csub\u3e6\u3c/sub\u3e(B = Cr, Fe) double perovskites

    Get PDF
    We investigate the electronic and magnetic properties of Ca 2 CrIrO 6 and Ca 2 FeIrO 6 by means of density functional theory. These materials belong to a family of recently synthesized Ca 2 CrOsO 6 whose properties show possible applications in a room temperature regime. Upon replacement of Os by Ir in Ca 2 CrOsO 6, we found the system to exhibit a stable ferrimagnetic configuration with a bandgap of ∼0.25 eV and an effective magnetic moment of ∼2.58 μ B per unit cell. Furthermore, when chemical doping is considered by replacing Cr with Fe and Os with Ir, the material retains the insulating state but with a reduced bandgap of 0.13 eV and large increment in the effective magnetic moment of ∼6.68 μ B per unit cell. These observed behaviors are noted to be the consequence of the cooperative effect of spin-orbit coupling; Coulomb correlations from Cr-3d, Fe-3d, and Ir-5d electrons; and the crystal field effect of the materials. These calculations suggest that by chemical tuning, one can manipulate the bandgap and their effective magnetic moment, which may help in material fabrication for device applications. To check further the suitability and applicability of Ca 2 CrIrO 6 and Ca 2 FeIrO 6 at higher temperatures, we estimate the Curie temperature (T C) by calculating the spin-exchange coupling. We found that our findings are in a valid T C trend similar to other perovskites. Our findings are expected to be useful in experimental synthesis and transport measurement for potential applications in modern technological devices

    Global transpiration data from sap flow measurements : the SAPFLUXNET database

    Get PDF
    Plant transpiration links physiological responses of vegetation to water supply and demand with hydrological, energy, and carbon budgets at the land-atmosphere interface. However, despite being the main land evaporative flux at the global scale, transpiration and its response to environmental drivers are currently not well constrained by observations. Here we introduce the first global compilation of whole-plant transpiration data from sap flow measurements (SAPFLUXNET, https://sapfluxnet.creaf.cat/, last access: 8 June 2021). We harmonized and quality-controlled individual datasets supplied by contributors worldwide in a semi-automatic data workflow implemented in the R programming language. Datasets include sub-daily time series of sap flow and hydrometeorological drivers for one or more growing seasons, as well as metadata on the stand characteristics, plant attributes, and technical details of the measurements. SAPFLUXNET contains 202 globally distributed datasets with sap flow time series for 2714 plants, mostly trees, of 174 species. SAPFLUXNET has a broad bioclimatic coverage, with woodland/shrubland and temperate forest biomes especially well represented (80 % of the datasets). The measurements cover a wide variety of stand structural characteristics and plant sizes. The datasets encompass the period between 1995 and 2018, with 50 % of the datasets being at least 3 years long. Accompanying radiation and vapour pressure deficit data are available for most of the datasets, while on-site soil water content is available for 56 % of the datasets. Many datasets contain data for species that make up 90 % or more of the total stand basal area, allowing the estimation of stand transpiration in diverse ecological settings. SAPFLUXNET adds to existing plant trait datasets, ecosystem flux networks, and remote sensing products to help increase our understanding of plant water use, plant responses to drought, and ecohydrological processes. SAPFLUXNET version 0.1.5 is freely available from the Zenodo repository (https://doi.org/10.5281/zenodo.3971689; Poyatos et al., 2020a). The "sapfluxnetr" R package - designed to access, visualize, and process SAPFLUXNET data - is available from CRAN.Peer reviewe

    Spatial Patterns and Temporal Stability of Throughfall in a Mature Douglas-fir Forest

    No full text
    Forest plays a key role in spatial distribution of rainfall and nutrients at fine spatial scales. Areas of localized rainfall and nutrient input at the soil surface may have a large effect on several hydrological and biogeochemical processes. In this paper, a Douglas-fir stand was revisited to evaluate the changes in the throughfall spatial distribution and its temporal stability due to forest growth and thinning. We used 32 funnel-type collectors distributed in a random stratified array within a 0.2 ha plot to measure throughfall amounts from February to November 2015. The throughfall variability was much lower as compared to the values reported ~25 years ago in the same site. We further assessed the spatial patterns of throughfall in spring and summer. We detected a spatial correlation length of 12 m and 8 m for spring and summer, respectively, which are higher than the values reported for other mature Douglas-fir forests in similar climatic conditions. Temporal stability plots confirmed that detected spatial patterns were stable in time

    Soil water- and overland flow dynamics in a tropical catchment subject to long-term slash-and-burn agriculture

    Full text link
    Years of slash-and-burn activities across the tropics have led to very a patchy land-cover with vegetation in various stages of regrowth but, the associated effects on runoff generation remain under-studied. We analysed soil moisture-, perched water level- and overland flow (OF) dynamics during two periods (15 February–2 November 2015 and 20 December 2015–2 March 2016) for plots in a small catchment in Eastern Madagascar where slash-and-burn agriculture has been practiced for more than 50 years: a 1.58 ha tree fallow (TF2), a 1.93 ha terraced shrub fallow (TSF), and a 0.08 ha degraded grassland plot with regularly coppiced and burned eucalypt trees (EUC). Near-surface saturated soil hydraulic conductivity (Ksat) was distinctly lower beneath TF2 compared to TSF and EUC, leading to distinctly different perched water level responses and OF occurrence. OF was highest for TF2 and lowest for TSF. Soil moisture content was lowest for EUC, resulting in the lowest antecedent moisture plus precipitation threshold for OF occurrence (82 mm compared to 129 mm for TSF and 137 mm for TF2). OF was generally in the form of saturation overland flow (SOF) and reflected perched water level dynamics, except at EUC where the occurrence of a perched water level was rare during the first measurement period. Soil moisture responses to rainfall at EUC were highly variable and became larger after harvesting and burning the plot prior to the second measurement period. These results show that soil physical properties and runoff-generation processes in areas with a long history of slash-and-burn agriculture can vary markedly over small spatial scales and need to be taken into account if catchment scale runoff responses are to be simulated or predicted

    Rebuilding soil hydrological functioning after swidden agriculture in eastern Madagascar

    Full text link
    Land-use change due to the widespread practice of swidden agriculture affects the supply of ecosystem services. However, there is comparatively little understanding of how the hydrological functioning of soils, which affects rainfall infiltration and therefore flood risk, dry-season flows and surface erosion, is affected by repeated vegetation clearing and burning, the extent to which this can recover following land abandonment and vegetation regrowth, and whether active restoration speeds up recovery. We used interviews with local land users and indicator plant species to reconstruct the land-use history of 19 different sites in upland eastern Madagascar that represent four different land-use categories: semi-mature forests that were never burnt but were influenced by manual logging until 15–20 years ago; fallows that were actively reforested 6–9 years ago; 2–10 year old naturally regenerating fallows; and highly degraded fire-climax grassland sites. Surface- and near-surface (down to 30 cm depth) saturated soil hydraulic conductivities (Ksat), as well as the dominant flow pathways for infiltration and percolation were determined for each land-cover type. Surface Ksat in the forest sites was very high (median: 724 mm h⁻¹) and infiltration was dominated by flow along roots and other preferential flow pathways (macropores), whereas Ksat in the degraded land was low (median: 45 mm h⁻¹) with infiltration being dominated by near-surface matrix flow. The total area of blue-dye stains was inversely correlated to the Ksat. Both surface- and near-surface Ksat had increased significantly after 6–9 years of forest regeneration (median values of 203 and 161mm h⁻¹ for reforestation and natural regeneration, respectively). Additional observations are needed to more fully understand the rates at which soil hydrological functioning can be rebuilt and whether active replanting decreases the time required to restore soil hydrological functioning or not

    Transpiration and stomatal conductance in a young secondary tropical montane forest : Contrasts between native trees and invasive understorey shrubs

    Get PDF
    It has been suggFested that vigorous secondary tropical forests can have very high transpiration rates, but sap flow and stomatal conductance dynamics of trees and shrubs in these forests are understudied. In an effort to address this knowledge gap, sap flow (thermal dissipation method, 12 trees) and stomatal conductance (porometry, six trees) were measured for young (5-7 years) Psiadia altissima (DC.) Drake trees, a widely occurring species dominating young regrowth following abandonment of swidden agriculture in upland eastern Madagascar. In addition, stomatal conductance (gs) was determined for three individuals of two locally common invasive shrubs (Lantana camara L. and Rubus moluccanus L.) during three periods with contrasting soil moisture conditions. Values of gs for the three investigated species were significantly higher and more sensitive to climatic conditions during the wet period compared with the dry period. Further, gs of the understorey shrubs was much more sensitive to soil moisture content than that of the trees. Tree transpiration rates (Ec) were relatively stable during the dry season and were only affected somewhat by soil water content at the end of the dry season, suggesting the trees had continued access to soil water despite drying out of the topsoil. The Ec exhibited a plateau-shaped relation with vapour pressure deficit (VPD), which was attributed to stomatal closure at high VPD. Vapour pressure deficit was the major driver of variation in Ec, during both the wet and the dry season. Overall water use of the trees was modest, possibly reflecting low site fertility after three swidden cultivation cycles. The observed contrast in gs response to soil water and climatic conditions for the trees and shrubs underscores the need to take root distributions into account when modelling transpiration from regenerating tropical forests.</p

    Vapour pressure deficit and solar radiation are the major drivers of transpiration in montane tropical secondary forests in eastern Madagascar

    Get PDF
    Young secondary tropical forests occupy a larger area than mature forests nowadays but our understanding of their ecohydrological functioning, particularly with respect to tree water uptake, remains poor. Deep soil water uptake may make mature forests resilient to periods of water stress, but little is known in this regard for young forests with possibly less extensive root networks. We, therefore, studied sap flow dynamics for one year in two 50 m x 50 m forest plots: a young secondary forest (YSF, 5–7 years) and a semi-mature forest (SMF; 20 years) in montane eastern Madagascar. Temporal variations in the depth of water uptake were inferred from the stable isotope compositions of soil- and xylem water. Transpiration rates were low for both forest sites (265 and 462 mm y−1 for the YSF and SMF, respectively). Vapour pressure deficit and global radiation explained most of the variation in transpiration rates at both sites. There was little evidence of transpiration limitation by soil water, despite an extended dry season. Trees in the YSF extracted water mostly from the intermediate soil depth (30–70 cm) during the dry season. In the SMF, the depth of uptake increased as the dry season progressed for some species (Abrahamia, Brachylaena and Cryptocaria), but not for others (Ocotea and Eugenia). Although the transpiration rates are low for both forests, they are comparable to results reported for other tropical montane sites after normalising for net energy input and leaf area. Estimated evapotranspiration totals (including interception loss, understorey and litter evaporation) were 679 mm and 1063 mm y−1 for the YSF and SMF, respectively (42% and 61% of precipitation, respectively). These results suggest that the stage of forest regrowth affects water uptake, and thus the water balance during forest succession
    corecore