84 research outputs found

    Compliance with pathology testing guidelines in Australian general practice: Protocol for a secondary analysis of electronic health record data

    Get PDF
    Š 2018 Author(s). Introduction In Australia, general practitioners usually are the first point of contact for patients with non-urgent medical conditions. Appropriate and efficient utilisation of pathology tests by general practitioners forms a key part of diagnosis and monitoring. However overutilisationand underutilisation of pathology tests have been reported across several tests and conditions, despite evidence-based guidelines outlining best practice in pathology testing. There are a limited number of studies evaluating the impact of these guidelines on pathology testing in general practice. The aim of our quantitative observational study is to define how pathology tests are used in general practice and investigate how test ordering practices align with evidence-based pathology guidelines. Methods and analysis Access to non-identifiable patient data will be obtained through electronic health records from general practices across three primary health networks in Victoria, Australia. Numbers and characteristics of patients, general practices, encounters, pathology tests and problems managed over time will be described. Overall rates of encounters and tests, alongside more detailed investigation between subcategories (encounter year, patient's age, gender, and location and general practice size), will also be undertaken. To evaluate how general practitioner test ordering coincides with evidence-based guidelines, five key candidate indicators will be investigated: Full blood counts for patients on clozapine medication; international normalised ratio measurements for patients on warfarin medication; glycated haemoglobin testing for monitoring patients with diabetes; vitamin D testing; and thyroid function testing. Ethics and dissemination Ethics clearance to collect data from general practice facilities has been obtained by the data provider from the RACGP National Research and Evaluation Ethics Committee (NREEC 17-008). Approval for the research group to use these data has been obtained from Macquarie University (5201700872). This study is funded by the Australian Government Department of Health Quality Use of Pathology Program (Agreement ID: 4-2QFVW4M). Findings will be reported to the Department of Health and disseminated in peer-reviewed academic journals and presentations (national and international conferences, industry forums)

    COVID-19: protocol for observational studies utilizing near real-time electronic Australian general practice data to promote effective care and best-practice policy—a design thinking approach

    Full text link
    Background: Health systems around the world have been forced to make choices about how to prioritize care, manage infection control and maintain reserve capacity for future disease outbreaks. Primary healthcare has moved into the front line as COVID-19 testing transitions from hospitals to multiple providers, where tracking testing behaviours can be fragmented and delayed. Pooled general practice data are a valuable resource which can be used to inform population and individual care decision-making. This project aims to examine the feasibility of using near real-time electronic general practice data to promote effective care and best-practice policy. Methods: The project will utilize a design thinking approach involving all collaborators (primary health networks [PHNs], general practices, consumer groups, researchers, and digital health developers, pathology professionals) to enhance the development of meaningful and translational project outcomes. The project will be based on a series of observational studies utilizing near real-time electronic general practice data from a secure and comprehensive digital health platform [POpulation Level Analysis and Reporting (POLAR) general practice data warehouse]. The study will be carried out over 1.5 years (July 2020–December 2021) using data from over 450 general practices within three Victorian PHNs and Gippsland PHN, Eastern Melbourne PHN and South Eastern Melbourne PHN, supplemented by data from consenting general practices from two PHNs in New South Wales, Central and Eastern Sydney PHN and South Western Sydney PHN. Discussion: The project will be developed using a design thinking approach, leading to the building of a meaningful near real-time COVID-19 geospatial reporting framework and dashboard for decision-makers at community, state and nationwide levels, to identify and monitor emerging trends and the impact of interventions/policy decisions. This will integrate timely evidence about the impact of the COVID-19 pandemic related to its diagnosis and treatment, and its impact across clinical, population and general practice levels

    New Molecular Reporters for Rapid Protein Folding Assays

    Get PDF
    The GFP folding reporter assay [1] uses a C-terminal GFP fusion to report on the folding success of upstream fused polypeptides. The GFP folding assay is widely-used for screening protein variants with improved folding and solubility [2]–[8], but truncation artifacts may arise during evolution, i.e. from de novo internal ribosome entry sites [9]. One way to reduce such artifacts would be to insert target genes within the scaffolding of GFP circular permuted variants. Circular permutants of fluorescent proteins often misfold and are non-fluorescent, and do not readily tolerate fused polypeptides within the fluorescent protein scaffolding [10]–[12]. To overcome these limitations, and to increase the dynamic range for reporting on protein misfolding, we have created eight GFP insertion reporters with different sensitivities to protein misfolding using chimeras of two previously described GFP variants, the GFP folding reporter [1] and the robustly-folding “superfolder” GFP [13]. We applied this technology to engineer soluble variants of Rv0113, a protein from Mycobacterium tuberculosis initially expressed as inclusion bodies in Escherichia coli. Using GFP insertion reporters with increasing stringency for each cycle of mutagenesis and selection led to a variant that produced large amounts of soluble protein at 37°C in Escherichia coli. The new reporter constructs discriminate against truncation artifacts previously isolated during directed evolution of Rv0113 using the original C-terminal GFP folding reporter. Using GFP insertion reporters with variable stringency should prove useful for engineering protein variants with improved folding and solubility, while reducing the number of artifacts arising from internal cryptic ribosome initiation sites

    Discovery and validation of a three-gene signature to distinguish COVID-19 and other viral infections in emergency infectious disease presentations: a case-control and observational cohort study

    Get PDF
    Summary Background Emergency admissions for infection often lack initial diagnostic certainty. COVID-19 has highlighted a need for novel diagnostic approaches to indicate likelihood of viral infection in a pandemic setting. We aimed to derive and validate a blood transcriptional signature to detect viral infections, including COVID-19, among adults with suspected infection who presented to the emergency department. Methods Individuals (aged ≥18 years) presenting with suspected infection to an emergency department at a major teaching hospital in the UK were prospectively recruited as part of the Bioresource in Adult Infectious Diseases (BioAID) discovery cohort. Whole-blood RNA sequencing was done on samples from participants with subsequently confirmed viral, bacterial, or no infection diagnoses. Differentially expressed host genes that met additional filtering criteria were subjected to feature selection to derive the most parsimonious discriminating signature. We validated the signature via RT-qPCR in a prospective validation cohort of participants who presented to an emergency department with undifferentiated fever, and a second case-control validation cohort of emergency department participants with PCR-positive COVID-19 or bacterial infection. We assessed signature performance by calculating the area under receiver operating characteristic curves (AUROCs), sensitivities, and specificities. Findings A three-gene transcript signature, comprising HERC6, IGF1R, and NAGK, was derived from the discovery cohort of 56 participants with bacterial infections and 27 with viral infections. In the validation cohort of 200 participants, the signature differentiated bacterial from viral infections with an AUROC of 0·976 (95% CI 0·919−1·000), sensitivity of 97·3% (85·8−99·9), and specificity of 100% (63·1−100). The AUROC for C-reactive protein (CRP) was 0·833 (0·694−0·944) and for leukocyte count was 0·938 (0·840−0·986). The signature achieved higher net benefit in decision curve analysis than either CRP or leukocyte count for discriminating viral infections from all other infections. In the second validation analysis, which included SARS-CoV-2-positive participants, the signature discriminated 35 bacterial infections from 34 SARS-CoV-2-positive COVID-19 infections with AUROC of 0·953 (0·893−0·992), sensitivity 88·6%, and specificity of 94·1%. Interpretation This novel three-gene signature discriminates viral infections, including COVID-19, from other emergency infection presentations in adults, outperforming both leukocyte count and CRP, thus potentially providing substantial clinical utility in managing acute presentations with infection. Funding National Institute for Health Research, Medical Research Council, Wellcome Trust, and EU-FP7

    Specific Inhibition of Phosphodiesterase-4B Results in Anxiolysis and Facilitates Memory Acquisition

    Get PDF
    Cognitive dysfunction is a core feature of dementia and a prominent feature in psychiatric disease. As non-redundant regulators of intracellular cAMP gradients, phosphodiesterases (PDE) mediate fundamental aspects of brain function relevant to learning, memory, and higher cognitive functions. Phosphodiesterase-4B (PDE4B) is an important phosphodiesterase in the hippocampal formation, is a major Disrupted in Schizophrenia 1 (DISC1) binding partner and is itself a risk gene for psychiatric illness. To define the effects of specific inhibition of the PDE4B subtype, we generated mice with a catalytic domain mutant form of PDE4B (Y358C) that has decreased ability to hydrolyze cAMP. Structural modelling predictions of decreased function and impaired binding with DISC1 were confirmed in cell assays. Phenotypic characterization of the PDE4BY358C mice revealed facilitated phosphorylation of CREB, decreased binding to DISC1, and upregulation of DISC1 and β-Arrestin in hippocampus and amygdala. In behavioural assays, PDE4BY358C mice displayed decreased anxiety and increased exploration, as well as cognitive enhancement across several tests of learning and memory, consistent with synaptic changes including enhanced long-term potentiation and impaired depotentiation ex vivo. PDE4BY358C mice also demonstrated enhanced neurogenesis. Contextual fear memory, though intact at 24 hours, was decreased at 7 days in PDE4BY358C mice, an effect replicated pharmacologically with a non-selective PDE4 inhibitor, implicating cAMP signalling by PDE4B in a very late phase of consolidation. No effect of the PDE4BY358C mutation was observed in the pre-pulse inhibition and forced swim tests. Our data establish specific inhibition of PDE4B as a promising therapeutic approach for disorders of cognition and anxiety, and a putative target for pathological fear memory

    Localized-Statistical Quantification of Human Serum Proteome Associated with Type 2 Diabetes

    Get PDF
    BACKGROUND: Recent advances in proteomics have shed light to discover serum proteins or peptides as biomarkers for tracking the progression of diabetes as well as understanding molecular mechanisms of the disease. RESULTS: In this work, human serum of non-diabetic and diabetic cohorts was analyzed by proteomic approach. To analyze total 1377 high-confident serum-proteins, we developed a computing strategy called localized statistics of protein abundance distribution (LSPAD) to calculate a significant bias of a particular protein-abundance between these two cohorts. As a result, 68 proteins were found significantly over-represented in the diabetic serum (p<0.01). In addition, a pathway-associated analysis was developed to obtain the overall pathway bias associated with type 2 diabetes, from which the significant over-representation of complement system associated with type 2 diabetes was uncovered. Moreover, an up-stream activator of complement pathway, ficolin-3, was observed over-represented in the serum of type 2 diabetic patients, which was further validated with statistic significance (p = 0.012) with more clinical samples. CONCLUSIONS: The developed LSPAD approach is well fit for analyzing proteomic data derived from biological complex systems such as plasma proteome. With LSPAD, we disclosed the comprehensive distribution of the proteins associated with diabetes in different abundance levels and the involvement of ficolin-related complement activation in diabetes

    The association between rheumatoid arthritis and periodontal disease

    Get PDF
    Chronic, plaque-associated inflammation of the gingiva and the periodontium are among the most common oral diseases. Periodontitis (PD) is characterized by the inflammatory destruction of the periodontal attachment and alveolar bone, and its clinical appearance can be influenced by congenital as well as acquired factors. The existence of a rheumatic or other inflammatory systemic disease may promote PD in both its emergence and progress. However, there is evidence that PD maintains systemic diseases. Nevertheless, many mechanisms in the pathogenesis have not yet been examined sufficiently, so that a final explanatory model is still under discussion, and we hereby present arguments in favor of this. In this review, we also discuss in detail the fact that oral bacterial infections and inflammation seem to be linked directly to the etiopathogenesis of rheumatoid arthritis (RA). There are findings that support the hypothesis that oral infections play a role in RA pathogenesis. Of special importance are the impact of periodontal pathogens, such as Porphyromonas gingivalis on citrullination, and the association of PD in RA patients with seropositivity toward rheumatoid factor and the anti-cyclic citrullinated peptide antibody

    Measurement of the Pseudorapidity and Centrality Dependence of the Transverse Energy Density in Pb-Pb Collisions at √sNN=2.76  TeV

    Get PDF
    The transverse energy (E-T) in Pb-Pb collisions at 2.76 TeV nucleon-nucleon center-of-mass energy (root s(NN)) has been measured over a broad range of pseudorapidity (eta) and collision centrality by using the CMS detector at the LHC. The transverse energy density per unit pseudorapidity (dE(T)/d eta) increases faster with collision energy than the charged particle multiplicity. This implies that the mean energy per particle is increasing with collision energy. At all pseudorapidities, the transverse energy per participating nucleon increases with the centrality of the collision. The ratio of transverse energy per unit pseudorapidity in peripheral to central collisions varies significantly as the pseudorapidity increases from eta = 0 to vertical bar eta vertical bar = 5.0. For the 5% most central collisions, the energy density per unit volume is estimated to be about 14 GeV/fm(3) at a time of 1 fm/c after the collision. This is about 100 times larger than normal nuclear matter density and a factor of 2.6 times higher than the energy density reported at root s(NN) = 200 GeV at the Relativistic Heavy Ion Collider
    • …
    corecore