107 research outputs found

    Formation of ER-lumenal intermediates during export of Plasmodium proteins containing transmembrane-like hydrophobic sequences

    Get PDF
    During the blood stage of a malaria infection, malaria parasites export both soluble and membrane proteins into the erythrocytes in which they reside. Exported proteins are trafficked via the parasite endoplasmic reticulum and secretory pathway, before being exported across the parasitophorous vacuole membrane into the erythrocyte. Transport across the parasitophorous vacuole membrane requires protein unfolding, and in the case of membrane proteins, extraction from the parasite plasma membrane. We show that trafficking of the exported Plasmodium protein, Pf332, differs from that of canonical eukaryotic soluble-secreted and transmembrane proteins. Pf332 is initially ER-targeted by an internal hydrophobic sequence that unlike a signal peptide, is not proteolytically removed, and unlike a transmembrane segment, does not span the ER membrane. Rather, both termini of the hydrophobic sequence enter the ER-lumen and the ER-lumenal species is a productive intermediate for protein export. Furthermore, we show in intact cells, that two other exported membrane proteins, SBP1 and MAHRP2, assume a lumenal topology within the parasite secretory pathway. Although the addition of a C-terminal ER-retention sequence, recognised by the lumenal domain of the KDEL receptor, does not completely block export of SBP1 and MAHRP2, it does enhance their retention in the parasite ER. This indicates that a sub-population of each protein adopts an ER-lumenal state that is an intermediate in the export process. Overall, this suggests that although many exported proteins traverse the parasite secretory pathway as typical soluble or membrane proteins, some exported proteins that are ER-targeted by a transmembrane segment-like, internal, non-cleaved hydrophobic segment, do not integrate into the ER membrane, and form an ER-lumenal species that is a productive export intermediate. This represents a novel means, not seen in typical membrane proteins found in model systems, by which exported transmembrane-like proteins can be targeted and trafficked within the lumen of the secretory pathway

    Alternative processing of human HTT mRNA with implications for Huntington's disease therapeutics

    Get PDF
    Huntington disease is caused by a CAG repeat expansion in exon 1 of the huntingtin gene (HTT) that is translated into a polyglutamine stretch in the huntingtin protein (HTT). We previously showed that HTT mRNA carrying an expanded CAG repeat was incompletely spliced to generate HTT1a, an exon 1 only transcript, which was translated to produce the highly aggregation-prone and pathogenic exon 1 HTT protein. This occurred in all knock-in mouse models of Huntington's disease and could be detected in patient cell lines and post-mortem brains. To extend these findings to a model system expressing human HTT, we took advantage of YAC128 mice that are transgenic for a yeast artificial chromosome carrying human HTT with an expanded CAG repeat. We discovered that the HTT1a transcript could be detected throughout the brains of YAC128 mice. We implemented RNAscope to visualise HTT transcripts at the single molecule level and found that full-length HTT and HTT1a were retained together in large nuclear RNA clusters, as well as being present as single transcripts in the cytoplasm. Homogeneous time-resolved fluorescence analysis demonstrated that the HTT1a transcript had been translated to produce the exon 1 HTT protein. The levels of exon 1 HTT in YAC128 mice, correlated with HTT aggregation, supportive of the hypothesis that exon 1 HTT initiates the aggregation process. Huntingtin-lowering strategies are a major focus of therapeutic development for Huntington's disease. These approaches often target full-length HTT alone and would not be expected to reduce pathogenic exon 1 HTT levels. We have established YAC128 mouse embryonic fibroblast lines and shown that, together with our QuantiGene multiplex assay, these provide an effective screening tool for agents that target HTT transcripts. The effects of current targeting strategies on nuclear RNA clusters are unknown, structures that may have a pathogenic role, or alternatively could be protective by retaining HTT1a in the nucleus and preventing it from being translated. In light of recently halted antisense oligonucleotide trials, it is vital that agents targeting HTT1a are developed, and that the effects of HTT-lowering strategies on the subcellular levels of all HTT transcripts and their various HTT protein isoforms are understood

    Environmental DNA reveals links between abundance and composition of airborne grass pollen and respiratory health

    Get PDF
    This is the final version. Available on open access from Elsevier via the DOI in this recordData and Code Availability Statement: Data collected using qPCR is archived and on NERC EIDC [https://doi.org/10.5285/28208be4-0163-45e6-912c-2db205126925]. Standard pollen monitoring ‘count’ data were sourced from the MEDMI database, with the exception of data from Bangor which were produced as part of the present study and are available on request. Prescribing datasets are publicly available, as are weather, air pollution, deprivation (IMD) and rural-urban category data. Hospital episode statistics (HES) datasets are sensitive, individual-level health data, which are subject to strict privacy regulations and are not publicly available. The study did not generate any unique codeGrass (Poaceae) pollen is the most important outdoor aeroallergen, exacerbating a range of respiratory conditions, including allergic asthma and rhinitis (‘hay fever’). Understanding the relationships between respiratory diseases and airborne grass pollen with view to improving forecasting has broad public health and socioeconomic relevance. It is estimated that there are over 400 million people with allergic rhinitis and over 300 million with asthma, globally, often comorbidly . In the UK, allergic asthma has an annual cost of around US$ 2.8 billion (2017). The relative contributions of the >11,000 (worldwide) grass species to respiratory health have been unresolved, as grass pollen cannot be readily discriminated using standard microscopy. Instead, here we used novel environmental DNA (eDNA) sampling and quantitative PCR (qPCR) , to measure the relative abundances of airborne pollen from common grass species, during two grass pollen seasons (2016 and 2017), across the UK. We quantitatively demonstrate discrete spatiotemporal patterns in airborne grass pollen assemblages. Using a series of generalised additive models (GAMs), we explore the relationship between the incidences of airborne pollen and severe asthma exacerbations (sub-weekly) and prescribing rates of drugs for respiratory allergies (monthly). Our results indicate that a subset of grass species may have disproportionate influence on these population-scale respiratory health responses during peak grass pollen concentrations. The work demonstrates the need for sensitive and detailed biomonitoring of harmful aeroallergens in order to investigate and mitigate their impacts on human health.Natural Environment Research Council (NERC)National Institute for Health Research (NIHR)Public Health EnglandUniversity of ExeterUniversity College LondonMet Offic

    Temperate airborne grass pollen defined by spatio-temporal shifts in community composition

    Get PDF
    This is the author accepted manuscript. The final version is available from Nature Research via the DOI in this record.Grass pollen is the world’s most harmful outdoor aeroallergen. However, it is unknown how airborne pollen assemblages change across time and space. Human sensitivity varies between different species of grass that flower at different times, but it is not known whether temporal turnover in species composition match terrestrial flowering or whether species richness steadily accumulates over the grass pollen season. Here, using targeted, high-throughput sequencing, we demonstrate that all grass genera displayed discrete, temporally restricted peaks of incidence, which varied with latitude and longitude throughout Great Britain, revealing that the taxonomic composition of grass pollen exposure changes substantially across the grass pollen season.Natural Environment Research CouncilBiotechnology and Biological Sciences Research Council (BBSRC

    Predicting the severity of the grass pollen season and the effect of climate change in Northwest Europe

    Get PDF
    Allergic rhinitis is an inflammation in the nose caused by overreaction of the immune system to allergens in the air. Managing allergic rhinitis symptoms is challenging and requires timely intervention. The following are major questions often posed by those with allergic rhinitis: How should I prepare for the forthcoming season? How will the season's severity develop over the years? No country yet provides clear guidance addressing these questions. We propose two previously unexplored approaches for forecasting the severity of the grass pollen season on the basis of statistical and mechanistic models. The results suggest annual severity is largely governed by preseasonal meteorological conditions. The mechanistic model suggests climate change will increase the season severity by up to 60%, in line with experimental chamber studies. These models can be used as forecasting tools for advising individuals with hay fever and health care professionals how to prepare for the grass pollen season

    UBQLN2 mediates autophagy-independent protein aggregate clearance by the proteasome

    Get PDF
    Clearance of misfolded and aggregated proteins is central to cell survival. Here, we describe a new pathway for maintaining protein homeostasis mediated by the proteasome shuttle factor UBQLN2. The 26S proteasome degrades polyubiquitylated substrates by recognizing them through stoichiometrically bound ubiquitin receptors, but substrates are also delivered by reversibly bound shuttles. We aimed to determine why these parallel delivery mechanisms exist and found that UBQLN2 acts with the HSP70-HSP110 disaggregase machinery to clear protein aggregates via the 26S proteasome. UBQLN2 recognizes client-bound HSP70 and links it to the proteasome to allow for the degradation of aggregated and misfolded proteins. We further show that this process is active in the cell nucleus, where another system for aggregate clearance, autophagy, does not act. Finally, we found that mutations in UBQLN2, which lead to neurodegeneration in humans, are defective in chaperone binding, impair aggregate clearance, and cause cognitive deficits in mice

    Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial

    Get PDF
    Background Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy

    A pair of Sub-Neptunes transiting the bright K-dwarf TOI-1064 characterised with CHEOPS

    Get PDF
    Funding: TGW, ACC, and KH acknowledge support from STFC consolidated grant numbers ST/R000824/1 and ST/V000861/1, and UKSA grant ST/R003203/1.We report the discovery and characterization of a pair of sub-Neptunes transiting the bright K-dwarf TOI-1064 (TIC 79748331), initially detected in the Transiting Exoplanet Survey Satellite (TESS) photometry. To characterize the system, we performed and retrieved the CHaracterising ExOPlanets Satellite (CHEOPS), TESS, and ground-based photometry, the High Accuracy Radial velocity Planet Searcher (HARPS) high-resolution spectroscopy, and Gemini speckle imaging. We characterize the host star and determine Teff,⋆=4734±67K⁠, R⋆=0.726±0.007R⊙⁠, and M⋆=0.748±0.032M⊙⁠. We present a novel detrending method based on point spread function shape-change modelling and demonstrate its suitability to correct flux variations in CHEOPS data. We confirm the planetary nature of both bodies and find that TOI-1064 b has an orbital period of Pb = 6.44387 ± 0.00003 d, a radius of Rb = 2.59 ± 0.04 R⊕, and a mass of Mb=13.5+1.7−1.8 M⊕, whilst TOI-1064 c has an orbital period of Pc=12.22657+0.00005−0.00004 d, a radius of Rc = 2.65 ± 0.04 R⊕, and a 3σ upper mass limit of 8.5 M⊕. From the high-precision photometry we obtain radius uncertainties of ∌1.6 per cent, allowing us to conduct internal structure and atmospheric escape modelling. TOI-1064 b is one of the densest, well-characterized sub-Neptunes, with a tenuous atmosphere that can be explained by the loss of a primordial envelope following migration through the protoplanetary disc. It is likely that TOI-1064 c has an extended atmosphere due to the tentative low density, however further radial velocities are needed to confirm this scenario and the similar radii, different masses nature of this system. The high-precision data and modelling of TOI-1064 b are important for planets in this region of mass–radius space, and it allow us to identify a trend in bulk density–stellar metallicity for massive sub-Neptunes that may hint at the formation of this population of planets.Publisher PDFPeer reviewe
    • 

    corecore