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SUMMARY

Clearance of misfolded and aggregated proteins is
central to cell survival. Here, we describe a new
pathway for maintaining protein homeostasis medi-
ated by the proteasome shuttle factor UBQLN2.
The 26S proteasome degrades polyubiquitylated
substrates by recognizing them through stoichio-
metrically bound ubiquitin receptors, but substrates
are also delivered by reversibly bound shuttles. We
aimed to determinewhy these parallel deliverymech-
anisms exist and found that UBQLN2 acts with the
HSP70-HSP110 disaggregase machinery to clear
protein aggregates via the 26S proteasome. UBQLN2
recognizes client-bound HSP70 and links it to the
proteasome to allow for the degradation of aggre-
gated and misfolded proteins. We further show that
this process is active in the cell nucleus, where
another system for aggregate clearance, autophagy,
does not act. Finally, we found that mutations in
UBQLN2, which lead to neurodegeneration in hu-
mans, are defective in chaperone binding, impair
aggregate clearance, and cause cognitive deficits
in mice.

INTRODUCTION

The modification of proteins with ubiquitin regulates most

cellular pathways. A major role for ubiquitylation is to target

proteins for degradation via the 26S proteasome, forming the

so-called ubiquitin-proteasome system (UPS) (Glickman and

Ciechanover, 2002). Ubiquitin chains are built on substrates

by E3 ubiquitin ligases, which link the first ubiquitin via its C

terminus to the ε-amino group of an internal lysine residue of

the substrate, followed by the conjugation of subsequent ubiq-

uitin moieties to a lysine of the preceding ubiquitin (Thrower

et al., 2000; Shabek et al., 2012; Lu et al., 2015). Specificity

in the UPS is largely mediated by the �600 E3 ubiquitin ligases

that recognize their cognate substrates, but there is also

selectivity on the level of delivery to the 26S proteasome, as

ubiquitylated proteins are either directly recognized by the pro-

teasome through stoichiometric subunits (RPN10 and RPN13)

or through loosely associated shuttle factors, which link poly-

ubiquitylated proteins and the proteasome to facilitate degra-

dation. Budding yeast has three shuttles: Dsk2, Rad23, and

Ddi1 (Verma et al., 2004; Elsasser et al., 2004). These have

an N-terminal ubiquitin-like (UBL) domain, which interacts

with the proteasome (Elsasser et al., 2002; Saeki et al.,

2002), and a C-terminal ubiquitin-associated (UBA) domain,

which binds polyubiquitylated proteins. They also all contain

domains between the UBL and UBA domains, whose functions

are largely unexplored. An important observation is that UBL-

UBA domain proteins act as inhibitors of proteasomal degra-

dation when overexpressed (Kleijnen et al., 2000; Chen and

Madura, 2002; Funakoshi et al., 2002; Raasi and Pickart,

2003). It is thus vital to study these proteins at endogenous

levels, as even small increases in their abundance inhibit

proteasomal degradation (Verma et al., 2004). Similarly, over-

expression of Dsk2 in yeast cells causes cell-cycle arrest

and cell death (Matiuhin et al., 2008), and overexpressing

UBQLN in Drosophila leads to photoreceptor neurodegenera-

tion (Ganguly et al., 2008).

Most vertebrates contain four homologs of the yeast protein

Dsk2, which are named ubiquilin-1–4 (UBQLN1–4). While

UBQLN1, 2, and 4 are expressed widely, UBQLN3 is restricted

to testis (Marı́n, 2014). Part of the central region of UBQLN2

contains domains with homology to a heat shock binding pro-

tein called STI1, which binds Stch (HSP13), a protein similar to

HSP70 (Kaye et al., 2000). UBQLN1, 2, and 4 each contain

four such STI1 domains and can all interact with Stch (Lim
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Figure 1. UBQLN2 Is Required for Cell Survival after Heat Shock

(A) Schematic of the known domains of UBQLN2, their binding partners, and reported familial disease mutations shown in italics.

(B) Binding partners of UBQLN2 that were identified by immunoprecipitation (IP) of UBQLN2 from mouse brain lysate followed by mass spectrometry.

(legend continued on next page)
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et al., 2006; Wang et al., 2011; Rual et al., 2005), although the

physiological role for this is currently unclear. UBQLN2 is

mutated in familial cases of the protein folding disorder amyo-

trophic lateral sclerosis (ALS) (Deng et al., 2011), and intrigu-

ingly, all familial mutations cluster to the PXXP motif, which is

unique to UBQLN2 and of unknown function (Deng et al.,

2011; Fahed et al., 2014; Williams et al., 2012; Vengoechea

et al., 2013) (Figure 1A).

The existence of shuttle factors is puzzling, and it is unclear

why not all polyubiquitylated proteins are recognized by the

intrinsic ubiquitin receptors of the proteasome. An attractive

possibility is that shuttle factors add functionality to the pro-

teasomal machinery to enable degradation of specialized sub-

strates. We have explored this by studying the mammalian

proteasome shuttle factor UBQLN2.

RESULTS

UBQLN2 Is Required for Survival after Proteotoxic
Stress
To better understand the role of UBQLN2 and its relevance to

neurodegenerative disease, we isolated its binding partners

from mouse brain using immunoprecipitation and mass spec-

trometry. UBQLN2most evidently bound to HSP70-type chaper-

ones, UBQLN1 and UBQLN4 (Figure 1B), and to a lesser extent

to proteasomal subunits (Figure 1B).

Thus, UBQLN2 may be involved in the regulation of misfolded

proteins. Indeed, UBQLN2 depletion by small interfering RNA

(siRNA) caused hyper-sensitivity to heat shock, with a drop in

cell viability comparable to the level observed after depletion of

HSP70 (HSPA1A; Figure 1C).

Previous work showed that UBQLN2 binds to a range of

protein aggregates in patient brains (Mori et al., 2012). We

established that endogenous UBQLN2 similarly co-purifies

with ubiquitylated insoluble protein aggregates generated by

heat shock (Figure 1D), along with HSP70 and the protea-

some (Figure 1E). Under non-stressed conditions (Figure 1D)

or after heat shock of pre-lysed cells (Figure S1A), endogenous

UBQLN2 is soluble, suggesting that UBQLN2 is not itself heat-

unstable but rather actively recruited to aggregates. Interest-

ingly, UBQLN1 and UBQLN4 remained soluble after heat

stress (Figure 1F), which was surprising given their homology

to UBQLN2.

Strikingly, we detected strongly increased binding of UBQLN2

to the proteasome and polyubiquitylated proteins after heat

shock (Figure 1G), as well as enhanced binding to HSP70 (Fig-

ure 1H), suggesting the protein becomes activated under stress.

UBQLN2 is not upregulated after heat shock (Figure S1B), indi-

cating that it may instead be held in a repressed state under

non-stressed conditions. Indeed, heat shock resulted in a loss

of binding to other UBQLNs, consistent with a model where het-

erologous UBQLN complexes represent dormant reservoirs

(Figure 1I).

UBQLN2 Is a Proteasome Shuttle that Acts with the
HSP70 System to Clear Aggregated Proteins
Heat shock generates aggregates of polyubiquitylated proteins

insoluble in up to 1% SDS (Figure S1C), which are cleared by

the proteasome (Figure 2A; Figure S1D). We found that siRNA

depletion of UBQLN2 resulted in a pronounced defect in the

clearance of heat-induced insoluble ubiquitin conjugates (Fig-

ure 2A) but did not affect their accumulation (Figure S1E), sup-

porting a role of UBQLN2 in protein aggregate clearance. Large

aggregates are thought to be degraded by a proteolytic mecha-

nism called autophagy. Thus, we examined autophagy-defective

atg5 knockout cells and found that these were just as capable as

wild-type cells in clearing heat-induced aggregates (Figure 2B).

In contrast, proteasomal inhibition led to a complete abrogation

of clearance for both wild-type and atg5 knockout cells (Fig-

ure 2B). Clearance also required UBQLN2, as atg5 knockout

cells where UBQLN2 was downregulated also no longer effi-

ciently cleared the aggregates (Figure 2C). These results demon-

strate that UBQLN2 mediates degradation of insoluble heat-

shock-induced aggregates through the proteasomal pathway,

independently of autophagy.

We next depleted HSP70 by siRNA and observed that HSP70

was also required to clear heat shock aggregates (Figure 2D).

HSP70-mediated disaggregase activity requires the co-chap-

erone HSP110 (HSP105 in mice) (Nillegoda et al., 2015). To

investigate whether UBQLN2 acts with the HSP70/HSP110

disaggregase pathway, we examined HSP110 (mHSP105)

knockout mouse embryonic fibroblasts (MEFs) (Nakamura

et al., 2008) and found that in these cells, interaction of both

HSP70 and ubiquitin conjugates with UBQLN2 was increased

even in the absence of heat stress (Figure 2E). This result sug-

gested that in cells lacking HSP110, UBQLN2 becomes acti-

vated due to a higher aggregate load. In addition, heat shock

induced a dramatic increase in the amount of UBQLN2, protea-

some, and ubiquitin conjugates in the insoluble fraction of

HSP110 knockout MEFs (Figure 2F), which also were impaired

in their ability to clear heat shock aggregates (Figure 2G). These

results demonstrate that UBQLN2 and the HSP70-HSP110

disaggregase act in the same pathway, and they explain how ag-

gregates are processed by the chaperones prior to UBQLN2-

mediated proteasomal degradation.

We next tested if UBQLN2 also mediates the degradation of

unfolded proteins independent of heat stress. The antibiotic pu-

romycin leads to the accumulation of unfolded nascent polypep-

tide chains (Eggers et al., 1997), and we found that UBQLN2

depletion impaired the clearance of these faulty translation prod-

ucts (Figure 2H), while UBQLN2 levels remained unchanged

(Figure S2C).

Since many protein aggregates are found in the nucleus,

where autophagy does not act, we next tested if UBQLN2

can enter the nucleus to clear protein aggregates. Using both

biochemical fractionation (Figure 2I; Figure S2A) and immunoflu-

orescence (Figure 2J), we found that UBQLN2 translocates into

(C) Depletion of UBQLN2 by two independent siRNAs (72 hr) leads to cell death on heat stress.

(D–F) UBQLN2, HSP70, and proteasome, but not UBQLN1 or UBQLN4, co-purify with insoluble ubiquitin-rich aggregates upon heat stress.

(G–I) UBQLN2 inducibly interacts with proteasomes, ubiquitylated proteins, and HSP70 after heat shock and loses binding to UBQLN1 and UBQLN4.

See also Figures S1 and S7.
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Figure 2. Heat Stress Activates UBQLN2 to Clear Aggregated Proteins

(A) UBQLN2 depletion by siRNA leads to defective clearance of heat-shock-induced insoluble ubiquitin conjugates (left), and quantification of insoluble ubiquitin

in the pellet (right) (n = 2). Error bars represent SEM.

(legend continued on next page)
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the nucleus upon heat stress, similar to HSP70 and other quality

control components (Velazquez and Lindquist, 1984; Park

et al., 2013). This did not happen using puromycin (Figure S2B),

which generates unfolded proteins in the cytoplasm. To test

if UBQLN2 clears nuclear substrates, we used cells stably ex-

pressing GFPu-NLS (Bennett et al., 2005), a model unfolded

nuclear protein. Heat shock causes aggregation of GFPu-NLS

(Figures S2D and S2E) and results in interaction of UBQLN2

with GFPu-NLS (Figure S2F), coinciding with nuclear trans-

location of UBQLN2. Moreover, the proteasomal degradation

of GFPu-NLS after heat shock was dependent on UBQLN2

(Figure S2G), demonstrating that UBQLN2 can clear nuclear

aggregates.

We next examined the requirement of UBQLN2 for the clear-

ance of a pathological Huntingtin fragment (HTTQ103), as

UBQLN2 has been described to bind to aggregates in mouse

models and patients with Huntington’s disease (HD) (Doi et al.,

2004;Rutherford et al., 2013).Wedetected recruitment of endog-

enous UBQLN2 to HTT aggregates (Figure 2K), alongside HSP70

and the 26S proteasome (Figures S3A and S3B). We next found

that the insoluble fraction from cells expressing GFP-HTTQ103,

but not non-pathological GFP-HTTQ25, is retained on a filter

trap alongside endogenous UBQLN2 (Figure 2L). HTTQ103 ag-

gregates are retained in the stacking gel in SDS-PAGE, where

we found that they also trap endogenous UBQLN2 (Figure S3C),

and downregulation of UBQLN2 led to increased HTTQ103 ag-

gregation (Figure 2M). Thus, UBQLN2 regulates degradation of

model and disease-linked aggregation-prone proteins. Impor-

tantly, we demonstrate that the UBQLN2/HSP70/26S-protea-

some pathway can clear aggregates in the nucleus.

UBQLN2Mutations DoNot Lead to UBQLN2 Aggregation
We next examined the disease-linked mutations of UBQLN2

found in patients with familial ALS. Previous reports have sug-

gested that both wild-type (WT) andmutant UBQLN2 aggregate,

as exogenous expression leads to their localization to cyto-

plasmic foci similar in appearance to aggregates (Deng et al.,

2011; Osaka et al., 2015). Indeed, exogenously expressing

UBQLN2 in cells causes formation of cytosolic foci (Figure 3A),

but no gross differences in size or number of foci were seen

for mutant UBQLN2 (P506T, P497H) (Figure 3A). Importantly,

mutating the UBA domain (L619A) to abolish ubiquitin binding

(Figure 3B) leads to complete exclusion of both WT and mutant

forms of UBQLN2 from the foci (Figure 3A), strongly suggesting

the foci are not misfolded UBQLN2. The foci do not co-localize

with as P bodies, stress granules (Figures S3D and S3E), or

autophagosomes (Figure S3F). Furthermore, UBQLN2 foci for-

mation does not render UBQLN2 insoluble, as UBQLN2 (WT)

and five disease-linked mutants remained soluble when overex-

pressed in HEK293 cells (Figure S4E). Importantly, endogenous

UBQLN2 is diffusely cytosolic (Figure 2J; Figure S4F).

Next, we used purified UBQLN2 to investigate the biophysical

properties of the WT and mutant proteins (Figure S4A). Small

angle X-ray scattering (SAXS) experiments using WT and two

mutant forms of UBQLN2 (P506T and P497H; Figure S4A) indi-

cated that the mutations reduce the flexibility of the protein (Fig-

ure S4D). Based on circular dichroism measurements, there

are no gross differences in secondary structure for any tested

mutant (Figure 3C). Using analytical ultracentrifugation, we de-

tected that both WT and mutant UBQLN2 forms dimers and

trimers in a concentration-dependent manner but no higher-

number oligomers or aggregates, which we also confirmed

by size exclusion chromatography (Figure 3D; Figures S4B

and S4C).

Disease-Linked UBQLN2 Mutation Impedes Binding to
HSP70 Chaperones and Sensitizes Cells to Protein
Folding Stress
As disease-linked mutant UBQLN2 did not aggregate, we

next used stable isotope labeling with amino acids in cell culture

(SILAC) proteomics to investigate changes in the interactome of

cells stably expressing inducible WT or mutant UBQLN2. We

found that disease-linked UBQLN2 (P506T) showed decreased

binding to HSP70 chaperones and increased binding to ubiquitin

(Figure 4A). We next generated a mouse knockin of the equiva-

lent human P506T mutation (mP520T) and confirmed these

changes at the endogenous level using primary MEFs from

male mice (UBQLN2 is X linked) (Figures 4B–4D; Figures S6A

and S6B). Strikingly, the binding of UBQLN2 to HSP70, ubiquity-

lated substrates and the proteasome after heat shock was

strongly attenuated for mutant UBQLN2 (Figure 4E). Also,

while the heat-shock-induced nuclear translocation of mutant

UBQLN2 (mP520T) was unaffected (Figure S5A), it was strongly

impaired in its recruitment to aggregates (Figure 4F), and cells

(B) Insoluble heat-shock-generated ubiquitin conjugates are cleared efficiently in ATG5 knockout (autophagy-deficient) MEFs in a proteasome-dependent

manner.

(C) UBQLN2 depletion in autophagy-deficient cells leads to attenuated clearance of heat-shock-induced insoluble ubiquitin conjugates. Quantification (n = 3) is

shown (right). Error bars represent SD; statistical tests were two-tailed t tests.

(D) HSP70 siRNA leads to a defective clearance of ubiquitylated aggregated proteins. Over time, the transcriptional heat shock response leads to increased levels

of HSP70.

(E) Increased interaction of UBQLN2 with HSP70 and ubiquitin was observed in HSP105 knockout (KO) MEF cells.

(F) UBQLN2 and ubiquitin are more abundant in the pellet fraction after heat shock in HSP105 KO MEF cells.

(G) HSP105 KOMEFs are deficient in clearing heat-shock-induced aggregates. In addition, increased binding of HSP70 and ubiquitin to UBQLN2 was detected.

(H) Depletion of UBQLN2 by siRNA leads to defective clearance of puromycin-labeled truncated proteins.

(I and J) UBQLN2 translocates to the nucleus after heat stress (see Figure S2A for fractionation protocol). Quantification of the normalized nuclear fluorescence

intensity is shown (J, bottom) (n = 99 and 122 for 37�C and 43�C, respectively). Error bars represent SD.

(K) UBQLN2 co-localizes with cellular HTT aggregates in HEK293 cells inducibly expressing pathological GFP-Huntingtin (HTTQ103).

(L) UBQLN2 co-aggregates with pathological, but not non-pathological, GFP-Huntingtin, as shown by filter trap assay.

(M) UBQLN2 depletion leads to increased HTT-Q103 aggregates, running in the stacking gel. Quadruplicate transfections are shown.

See also Figures S2, S3, S4, and S7.
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Figure 3. UBQLN2 Mutations Do Not Cause Protein Aggregation

(A) Inducible HEK293 cells stably overexpressing the indicated FLAG-UBQLN2 exhibit cytosolic foci for both the wild-type (WT) and P506T mutant. The L619A

ubiquitin non-binding point mutation abrogates foci formation for WT and P506T mutant.

(B) UBQLN2 point mutants (F594V and L619A) are defective in polyubiquitin binding.

(C) Circular dichroism performed on pure wild-type andmutant protein. PONDR prediction (inset) results in a small decrease of disorder for PXXPmutant proteins

(WT, P506T, and P497H shown). Experimentally, no difference is seen in the amount of disorder and secondary structure for the mutants.

(D) Purified UBQLN2 was analyzed by analytical ultracentrifugation at different concentrations, showing dimer and trimer peaks for both WT and mutant protein.

See also Figures S3 and S4.
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expressing UBQLN2 (mP520T) were hypersensitive to both heat

shock and puromycin stress compared to their wild-type litter-

mate counterparts (Figures 4G and 4H). Together, these data

suggest that the disease-linked forms of UBQLN2 are loss-of-

function mutations.

Since binding of UBQLN2 to HSP70 was unaffected by inhib-

iting stress inducible kinases or the ubiquitin E1 (Figures S5B

and S5C) and recruitment of UBQLN2 to the insoluble fraction

was also independent of ubiquitylation (Figure 5A), binding of

UBQLN2 to HSP70 may in turn depend on client binding to

HSP70.

To test this, we used an in vitro system to examine the effect of

protein aggregates on theUBQLN2-HSP70 interaction.Strikingly,

the interaction between HSP70 and UBQLN2 was only induced

Figure 4. Disease Mutant UBQLN2 Loses

Binding to HSP70 and Sensitizes to Protein

Misfolding Stress

(A) SILAC proteomics was performed on FLAG

IP from cells stably expressing inducible FLAG-

UBQLN2 WT or P506T. Interaction with proteaso-

mal subunits (PSMA6 shown) is unaffected by the

mutation, UBQLN2 P506T binding to HSP70 family

members (HSPA1A, HSPA8) is significantly lower

(p < 0.0001), and binding to ubiquitin is significantly

higher (p = 0.011). Asterisks indicate a statistically

significant difference from a SILAC ratio of 1 (two-

tailed single-value t test).

(B–D) Decreased binding to HSP70 and increased

binding to ubiquitin was confirmed by UBQLN2 IP

from wild-type and mP520T (equivalent to human

P506T) primary male mouse embryonic fibroblasts

(MEFs), derived from littermate embryos. HSP70

(B) and ubiquitin (C) were detected by western blot.

(C) Quantification of mutant/wild-type signal ratio

for co-immunoprecipitated HSP70 and ubiquitin.

Asterisk indicates a statistically significant differ-

ence from amean ratio of 1 (two-tailed single-value

t test).

(E) Stress-induced binding to HSP70, ubiquitin and

proteasomes is defective for mutant UBQLN2.

Asterisk indicates Rpt6 (proteasome).

(F) Mutant UBQLN2 is defective in association to

heat shock induced aggregates. Asterisk indicates

a non-specific band.

(G) mP520TMEFs are hypersensitive to heat shock

as compared to WT counterparts.

(H) mP520T MEFs are hypersensitive to 20-hr pu-

romycin treatment at the indicated concentrations.

Error bars represent SD. Statistical test was a

two-tailed t test. See also Figures S5, S6, and S7.

when reactions also contained HSP70

client in the form of either mildly denatured

(42�C for 30min; Figure 5B; Figure S5D) or

strongly denatured (95�C for 5 min; Fig-

ure S5E) recombinant luciferase. We next

tested if the presence of HSP70 client

would also result in the recruitment of

purified human proteasomes (Figure 5C).

Indeed, the interactions among HSP70,

UBQLN2, and proteasomes in vitro were

strongly induced by the addition of denatured luciferase, demon-

strating that the presence of substrate leads to the formation of

degradation complexes (Figure 5D).

We next asked if a relevant pathological aggregate would have

the same effect on HSP70/UBQLN2 complex formation. For this,

we added small amounts of brain extracts fromwild-type or R6/2

HD model mice (Mangiarini et al., 1996) to the in vitro interaction

experiments and found that only the R6/2 extract triggered

the interaction between HSP70 and UBQLN2 (Figure 5E; Fig-

ure S5F). This effect was seen with WT UBQLN2, but strikingly

not with the disease-linked UBQLN2 (P506T; Figure 5E), entirely

corroborating our cell-based experiments. Thus, the data

strongly support a model whereby binding of clients to HSP70

triggers interaction with UBQLN2, which then bridges binding

Cell 166, 935–949, August 11, 2016 941



Figure 5. HSP70 Client Interaction Drives UBQLN2-HSP70 Binding

(A) UBQLN2 association to heat-shock-induced pelleted proteins is independent of ubiquitin. Cells were treated with the ubiquitin E1 inhibitor MLN7243, heat

shocked, and fractionated into supernatant and pellet.

(legend continued on next page)
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to the proteasome to mediate degradation. For disease-linked

UBQLN2, mutations no longer support interaction with client-

bound HSP70 and aggregate clearance is impaired.

HSP70 can be roughly divided into two distinct domains, the

N-terminal ATPase domain and the C-terminal substrate-binding

domain, where also regulatory proteins such as the ubiquitin

ligase CHIP bind (Zhang et al., 2015). We found that the C termi-

nus of HSP70 is sufficient to bind UBQLN2, but unlike for the full-

length protein, the interaction was constitutive and not regulated

by heat shock (Figure 5F). We also tested if the PXXP motif is

required for interaction; however, deletion of the PXXP motif

had no effect on HSP70 binding, demonstrating that this region

is not the direct binding site (Figure S5G). Instead, it is likely

that the PXXP mutations interfere indirectly with HSP70 binding.

UBQLN2 Mutation Leads to Cognitive Impairment and
Inclusion Body Pathology in Mice
After confirming decreased UBQLN2-HSP70 binding in knockin

mouse brain (Figure 5G), we undertook a longitudinal behavioral

study to determine the effect on mouse behavior. Using novel

object recognition tests, where the time that a mouse spends

exploring a novel versus familiar object is measured, we

observed thatmutant UBQLN2 (mP520T) animals were no longer

able to distinguish between novel and familiar objects at

12 months of age (Figure 5H). Similarly, in novel place recogni-

tion tests (Figure 5I), mutant animals were incapable of distin-

guishing an object in a new location at both 9 and 12 months

of age. Thus, UBQLN2 (mP520T) knockinmice develop cognitive

deficits with age.

As patients also have motor defects, we tested the UBQLN2

(mP520T) knockin animals using gait and rotarod analysis (Fig-

ures S6C–S6E) but observed no gross defects in either assay,

although mutant mice presented with a slightly shorter stride

length (Figure S6C). To assess if the cognitive deficits were

accompanied by pathological changes, we performed immuno-

histochemical analyses on CNS tissues from 15- to 18-month-

old mice. We observed regionalized UBQLN2 and p62 inclusion

pathology in the hippocampus, cortex, and brainstem of mutant,

but not WT, mice (Figure 5J). Interestingly, UBQLN2 is promi-

nently present in the pellet fraction in hippocampal, but not

cortical or cerebellar, tissue, despite similar expression levels

(Figure 5K; Figures S7A and S7B). Importantly, our combined

behavioral and histological findings demonstrate that UBQLN2

(mP520T) knockin mice recapitulate cognitive and pathological

features of UBQLN2-associated neurodegeneration.

UBQLN2 Mutation Impairs the Clearance of Protein
Aggregates In Vivo
To examine the role of UBQLN2 in handling aggregating clients

in vivo, we turned to mutant Huntingtin (HTT) as a representa-

tive model. Using the R6/2 transgenic mouse (Mangiarini

et al., 1996) and the HdhQ150 knockin mouse model (Lin

et al., 2001), we found that immunoprecipitated UBQLN2 only

associated with aggregated, but not SDS-soluble, HTT in vivo

(Figures 6A and 6B). In both mouse models, binding of UBQLN2

to HTT was age- and disease-stage specific and only occurred

once HTT had aggregated. HTT fragments passively diffuse into

the nucleus in neurons, where they are retained upon aggrega-

tion (Cornett et al., 2005). Importantly, nuclear aggregation of

HTT in both mouse models led to a translocation of UBQLN2,

but not UBQLN1, to the nucleus (Figure 6C; Figure S7D). A pro-

portion of HSP70 was present in nuclei at all ages (Figure 6C),

and importantly, aggregate-associated HSP70 was trapped in

the stacking gel in UBQLN2 immunoprecipitations from R6/2

brains (Figure S7E). Thus, mouse UBQLN2 behaves identically

in HD mouse brains to UBQLN2 in cultured cells after heat

shock.

Moreover, UBQLN2 and HTT were co-captured by a ubiquitin

binding resin (Hjerpe et al., 2009) (TUBE; Figure 6D), demon-

strating that HTT-UBQLN2 complexes contain ubiquitin, sug-

gesting they may be cleared by the proteasome.

To directly test if UBQLN2 regulates HTT aggregation in vivo,

we crossed R6/2 mice with UBQLN2 mP520T mutant knockin

mice and observed a pronounced and significant increase of

aggregated HTT, and a concomitant decrease of soluble HTT

(Figure 6E). UBQLN2 co-localized with HTT inclusions (Fig-

ure S7D), and the number of nuclear HTT aggregates was signif-

icantly higher in the cortex of R6/2; mP520T double mutant

animals compared to the R6/2 animals (Figure 6F). Moreover,

a Seprion ligand assay shows significantly higher aggregate

load in double-mutant brains, independently confirming our

western blot and immunofluorescence analysis (Figure 6G).

(B) Presence of HSP70-client induces UBQLN2-HSP70 interaction in vitro. Reaction components were mixed and incubated at the indicated temperature,

followed by pull-down of GST-HSP70.

(C) Purified human 26S proteasome. Lane 1, Coomassie staining of 2 mg purified human proteasome; lanes 2–4, in-gel LLVY-AMC (N-succinyl-leucine-leucine-

valine-tyrosine-7-amino-4-methylcoumarin) chymotrypsin activity of 2 mg human proteasome, Coomassie staining, and immunoblot with anti-Rpt5 antibody in

4% native-PAGE, respectively.

(D) Heat-denatured (95�C) or native recombinant luciferase was added to the other reaction components, followed by GST-HSP70 pull-down.

(E) Pathological Huntingtin aggregates induce binding of GST-HSP70 to purified wild-type, but not mutant (P506T), UBQLN2 in vitro. Brain extract fromwild-type

or R6/2 mice was spiked into the reaction mix, followed by GST-HSP70 pull-down and analysis of UBQLN2 binding.

(F) UBQLN2 binds to the C-terminal domain of HSP70. IP of HSPA8-SV5 mutants expressed in HEK293 cells and detection of endogenous UBQLN2. Cells were

heat shocked as indicated. Schematic shows the HSP70 domains.

(G) Mutant UBQLN2 shows reduced binding to HSP70 in knockin mouse brain.

(H and I) The UBQLN2mP520T knockin mutation leads to cognitive impairment in agedmice. Male mice (n = 11 of each genotype) were aged and tested in novel-

object and novel-place recognition tests. Error bars represent SD. Statistical tests were two-tailed t tests.

(J) Aged UBQLN2 mP520T knockin animals have UBQLN2- and p62-positive inclusion body pathology. Brains from aged (15- to 18-month-old) mice were

subjected to immunohistochemistry (IHC) for UBQLN2 and p62 (n = 6 per genotype). Red shading in schematic shows areas of inclusion pathology.

(K) Mutant UBQLN2 is specifically present in the pellet from hippocampal lysates in aged (15- to 18-month-old) knockin mice. Isolated neocortex (CTX), hip-

pocampus (HC), and cerebellum (CB) were separated into NP40-soluble and insoluble fractions. Asterisk indicates an unspecific band.

See also Figures S5, S6, and S7.
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Figure 6. UBQLN2 Mutation Impairs Aggregate Clearance In Vivo

(A and B) UBQLN2 interacts with aggregated, but not SDS-soluble, HTT in vivo, as judged by reciprocal IP of HTT and UBQLN2 from the R6/2 transgenic (A) and

HdhQ150 knockin (B) Huntington’s disease models.

(C) UBQLN2, but not UBQLN1, translocates to the nucleus in the R6/2 and HdhQ150 models.

(D) UBQLN2 is present in ubiquitylatedHuntingtin aggregates frombrains of the R6/2 andHdhQ150mousemodels. Aggregated HTT andUBQLN2were captured

with a ubiquitin binding resin (GST-TUBE).

(legend continued on next page)

944 Cell 166, 935–949, August 11, 2016



Thus, UBQLN2 mediates the clearance of protein aggregates

in vivo, and the disease-linked forms of UBQLN2 are loss-of-

function mutations, resulting in a failure to clear aggregating

proteins.

DISCUSSION

Proteasome Shuttle Factors as a Route for Protein
Degradation
Degradation through the UPS is the major cellular mechanism of

selective protein turnover. We have shown that the shuttle factor

UBQLN2 works with the HSP70 system for proteasomal degra-

dation of insoluble ubiquitylated protein aggregates. UBQLN2

does this by coupling recognition of HSP70-bound clients

with its proteasome shuttle properties. UBQLN2 binding to

ubiquitylated proteins and the proteasome is negligible under

resting conditions, suggesting it is constitutively held in an inac-

tive state. Accumulation of clients results in an activation of

UBQLN2, mediated by recognizing client-bound HSP70, where

binding to ubiquitylated substrates is induced and degradation

facilitated.

UBQLN2 Integrates the Chaperone Network with the
UPS to Clear Protein Aggregates
UBQLN2 is needed both for aggregate clearance and survival af-

ter proteotoxic stress, suggesting that it is an integral component

of the proteostasis network similar to HSP70 (Labbadia andMor-

imoto, 2015). Our finding that efficient binding of UBQLN2 to

HSP70 requires the presence of HSP70 clients integrates the

chaperone network with the UPS.

Our conclusions are summarized in Figure 7. Briefly, under

resting conditions, UBQLN2 is inactive and bound to other

UBQLNs and itself. Activation of UBQLN2 occurs when HSP70

binds to client proteins, triggering exposure of a UBQLN2 bind-

ing site. A structural change in HSP70mediated by client binding

would provide efficient and fast means of activating degradation,

while ensuring that complexes are only formed in the presence of

unfolded client. Activation of UBQLN2 also allows binding of 26S

proteasome to form a degradation-competent complex. Inter-

estingly, initial complex formation among client-bound HSP70,

UBQLN2, and proteasome does not require polyubiquitylation

of the client. However, ubiquitin is an integral part of proteasomal

degradation, and heat-shock-induced aggregated proteins are

ubiquitylated. Ubiquitylation of an HSP70 client could thus take

place with UBQLN2 already present in the complex and may

enhance UBQLN2 affinity, committing the client to proteasomal

degradation. This model explains why we observe the inducible

binding of UBQLN2 to ubiquitylated proteins after heat shock.

Moreover, it is very likely that translocation into the proteolytic

chamber and degradation of the substrate by the proteasome

requires polyubiquitylation of the client, even though initial com-

plex formation does not. Whether a client is refolded by HSP70

or degraded by UBQLN2/UPS may ultimately be a question of

its residence time on HSP70.

The HSP70-UBQLN2-Proteasome Pathway Provides an
Autophagy-Independent Means for Clearing Protein
Aggregates
Sinceproteasomes canonly accommodate single unfoldedpoly-

peptide chains and not large aggregates, it has been assumed

that the proteasome cannot degrade these. We demonstrate

that the proteasome can clear aggregates through a UBQLN2-

HSP70 pathway but suggest aggregates are first solubilized by

HSP70-HSP110 disaggregase activity. Lending support to this

idea, we show that the HSP70 cofactor HSP110, which is part

of the HSP70-mediated disaggregase (Nillegoda et al., 2015), is

also required for the efficient clearanceof heat shockaggregates.

UBQLN2 likely binds to HSP70 associated to both insoluble and

soluble misfolded proteins as part of an ongoing disaggregation

and clearance activity, which explains our observation that

UBQLN2 co-purifies with insoluble ubiquitylated aggregates.

This model is consistent with previous reports that demonstrate

that aggregates exist in equilibrium between soluble and insol-

uble states (Yamamoto et al., 2000), and we propose that the

soluble fraction is degraded by the proteasome, while autophagy

may manage larger insoluble structures. Critically, we show that

UBQLN2 can clear aggregates in the nucleus, where autophagy

is absent (Lu et al., 2014).

UBQLN2 Loss-of-Function Mutations Lead to Disease
Due to Loss of HSP70 Binding
It has been unclear whether UBQLN2 mutations cause disease

through loss of function or toxic gain of function. We found that

a disease-linked mutation led to a pronounced sensitivity to pro-

teotoxic stress, effectively phenocopying the effect of UBQLN2

depletion, strongly suggesting a loss-of-function mutation. Our

data demonstrate that this defect is due to impaired interaction

with HSP70, ultimately leading to defective aggregate clearance

(Figure 7). Interestingly, translocation of UBQLN2 into the

nucleus was not affected by the disease mutation, suggesting

that this aspect of the stress response is independent of

HSP70 binding. This makes sense, as our model predicts that

activation of UBQLN2 would rely upon association to client-

bound HSP70, and it is unlikely that such a complex would be

formed in the cytoplasm and then driven into the nucleus. How-

ever, the mechanism by which UBQLN2 is tranlsocated into the

nucleus as inactive species is currently unclear.

We also found that the mutant form of UBQLN2 binds slightly

more polyubiquitin than the WT under unstressed conditions.

The reason is not apparent, but it may be due to UBQLN2

(E) The R6/2 and UBQLN2mP520T mice were crossed to produce double-mutant animals, and 9-week-old male brains from these were assayed for aggregated

HTT by western blot. Quantification of soluble HTT is shown (bottom) (n = 4 per genotype).

(F) Immunofluorescence (IF) of nuclear HTT aggregates in R6/2 and R6/2;mP520T brains shows more inclusion bodies in the double mutant. Quantification is

shown (right). Error bars represent SEM. Statistical test was a two-tailed t test.

(G) The Seprion ligand assay independently confirms a significant increase in aggregated HTT in double mutants, compared to R6/2 littermates (n = 8 per

genotype).

Error bars represent SEM. See also Figure S7.
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occasionally dissociating from its inactive state under resting

conditions, leading to binding to polyubiquitylated proteins and

a possible delay of mutant UBQLN2 in returning to its inhibited

state. This difference is dramatically swamped under stress con-

ditions, where ubiquitin binding by mutant UBQLN2 is signifi-

cantly decreased versus the WT protein.

Figure 7. Model of How UBQLN2 Manages Proteotoxic Stress

Under non-stressed conditions, UBQLN2 is held inactive in homo- or hetero-dimers (1). In the presence of HSP70 clients, UBQLN2 binds to HSP70 and

associated misfolded/aggregated proteins, which are ubiquitylated (2). HSP70/HSP110-dependent disaggregase activity pulls aggregated proteins apart, al-

lowing for UBQLN2 to act as a proteasome shuttle connecting ubiquitylated misfolded proteins to the proteasome, after forming a HSP70-client-UBQLN2-

proteasome degradation complex (3) ending in client proteolysis (4). Disease mutant UBQLN2 (star) is defective in its association to HSP70 and no longer

effectively forms a degradation complex, leading to accumulation of misfolded/aggregated proteins (5).
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Together, our data provide a mechanistic understanding of

UBQLN2, which in the future may allow for the design of small

molecules to mediate the therapeutic activation of UBQLN2 in

patients with diseases of protein aggregation.

EXPERIMENTAL PROCEDURES

Animal Work

UBQLN2 P520T constitutive knock-in mice were created and supplied by

Taconic/Artemis. R6/2 mice were maintained as previously described (Bett

et al., 2006). Mice were bred at the University of Dundee and Kings College Lon-

don in accordancewithEuropeanUnion andHomeOffice regulations.Workwas

approved by the Ethical ReviewCommittee (ERC) from the University of Dundee

andwasperformedwithaUKHomeOfficeproject license.R6/2maleswerebred

with heterozygous UBQLN2 P520T females at Charles River Laboratories (UK).

Cell Culture and Cell Lines

Cells stably expressing inducible FLAG-UBQLN2 WT, P506T, P497H, L619A,

P506T/L619A, P497H/L619A, HTTQ25-GFP, and HTTQ103-GFPwere created

using T-Rex HEK293 (Life Technologies, R710-07). Stably expressing cells

were maintained in DMEM (Life Technologies, 11995-065), 10% fetal bovine

serum (FBS), 50 U/ml penicillin, 50 mg/ml streptomycin (Life Technologies,

15070-063), 2 mM L-glutamine, 100 mg/ml hygromycin (Invivogen, ant-hg-

1bl), and 15 mg/ml blasticidin (Invivogen, ant-bl-1). Expression was induced

with 2–5 ng/ml doxycycline. U2OS cells, HEK293 cells, and MEFs were main-

tained as above but without hygromycin and blasticidin.

Solubility Experiments

Cellswere heat shocked at the indicated temperature for 2 hr followedby recov-

ery at 37�C. Soluble and pellet fractions were generated by lysing cells

in stringent lysis buffer (20 mM Tris-HCL, 2 mM EDTA, 150mMNaCl, 1.2% de-

oxycholate, 1.2% Triton-X, 200 mM iodoacetamide and cOmplete protease

inhibitor cocktail [Roche]), sonicating (30% power 33 10 s pulses), and centri-

fugation at 17,000 3 g for 15 min. The supernatant was collected and repre-

sented the soluble fraction. The remaining pellet (insoluble fraction) waswashed

five times inPBSand re-suspended in Laemmli’s sample buffer. Togenerate the

cytosolic-soluble, nuclear-soluble, and total-insoluble fractions, cells were first

lysed in low-stringency buffer (10 mM HEPES [pH 7.9], 1.5 mM MgCl2, 10 mM

KCL, 0.08%NP-40, and cOmplete protease inhibitor cocktail [Roche]) followed

bycentrifugationat 17,0003g for 15min. Thesupernatant (soluble fraction)was

collected. The remaining pellet was washed five times in PBS prior to re-sus-

pending in stringent lysis buffer, and soluble and insoluble fractions were gener-

ated as above. In this case, the supernatant represented the nuclear-soluble

fraction and the pellet represented the total-insoluble fraction.

Cell Viability Assays

Cell viability assays were done by lysing cells in 50 mM Tris/phosphate

(pH 7.8), 1.6 mM MgCl2, 2 mM DTT, 2% Triton X-100, 30% glycerol, 1%

BSA, 0.250 mM D-luciferin, 8 mM sodium pyrophosphate, and 500 ng

QuantiLum recombinant Luciferase (Promega). Viability was determined using

Envision 2104 plate reader (Perkin Elmer). Cells were heat shocked for 2 hr

followed by 24 hr recovery prior to viability assay being carried out.

Antibodies

Sheep antibodies to UBQLN1, UBQLN2, and UBQLN4 were produced in

house, raised against the following epitopes (residues numbered): mouse

UBQLN1 482-515, mouse UBQLN2 11-27, human UBQLN2 478-518, mouse

UBQLN4 84-161 (Figures S7F–S7J). Additional antibodies were FLAG-M2-

peroxidase (Sigma-Aldrich, A8592), HSP70 (Abcam, ab181606), GAPDH (Cell

Signaling Technology), Actin (Millipore, MAB1501R), anti-ubiquitin (Dako, Z

0458), GFP (Roche), Histone H4 (Abcam), histone H3B (Abcam), HTT (Bett

et al., 2006), tubulin (Sigma), RPT6 (Enzo Life Sciences, BML PW9265), puro-

mycin 12D10, (Millipore, MABE343). For immunofluorescence, anti-UBQLN2

from Novus Biologicals (NBP2-25164SS), anti-RPT3 (Bethyl Laboratories,

A303-850A), and anti-GFP (Abcam, ab13970) were used. Secondary anti-

bodies were from Bio-Rad (anti-mouse 170-5047; anti-rabbit 170-5046) and

Abcam (anti-sheep ab97130). Protein-G horseradish peroxidase (HRP) was

used for secondary detection in immunoprecipitations (Abcam, ab7460).

SUPPLEMENTAL INFORMATION
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and seven figures and can be found with this article online at http://dx.doi.
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