279 research outputs found

    Very, very late stent thrombosis triggered by in-stent neoatherosclerosis: optical coherence tomography findings

    Get PDF
    Escola Paulista de Medicina, Universidade Federal de São Paulo, BrazilHospital Israelita Albert Einstein, São Paulo, BrazilColumbia University Medical Center, New York, NY; Cardiovascular Research Foundation, New York, NY, USAHôpital du Sacré-Coeur de Montréal, Université de Montréal, Montréal, Quebec, CanadaEscola Paulista de Medicina, Universidade Federal de São Paulo, BrazilWeb of Scienc

    Combining Citizen Science and Genomics to Investigate Tick, Pathogen, and Commensal Microbiome at Single-Tick Resolution

    Get PDF
    The prevalence of tickborne diseases worldwide is increasing virtually unchecked due to the lack of effective control strategies. The transmission dynamics of tickborne pathogens are influenced by the tick microbiome, tick co-infection with other pathogens, and environmental features. Understanding this complex system could lead to new strategies for pathogen control, but will require large-scale, high-resolution data. Here, we introduce Project Acari, a citizen science-based project to assay, at single-tick resolution, species, pathogen infection status, microbiome profile, and environmental conditions of tens of thousands of ticks collected from numerous sites across the United States. In the first phase of the project, we collected more than 2,400 ticks wild-caught by citizen scientists and developed high-throughput methods to process and sequence them individually. Applying these methods to 192 Ixodes scapularis ticks collected in a region with a high incidence of Lyme disease, we found that 62% were colonized by Borrelia burgdorferi, the Lyme disease pathogen. In contrast to previous reports, we did not find an association between the microbiome diversity of a tick and its probability of carrying B. burgdorferi. However, we did find undescribed associations between B. burgdorferi carriage and the presence of specific microbial taxa within individual ticks. Our findings underscore the power of coupling citizen science with high-throughput processing to reveal pathogen dynamics. Our approach can be extended for massively parallel screening of individual ticks, offering a powerful tool to elucidate the ecology of tickborne disease and to guide pathogen-control initiatives

    Statistical Inference of In Vivo Properties of Human DNA Methyltransferases from Double-Stranded Methylation Patterns

    Get PDF
    DNA methyltransferases establish methylation patterns in cells and transmit these patterns over cell generations, thereby influencing each cell's epigenetic states. Three primary DNA methyltransferases have been identified in mammals: DNMT1, DNMT3A and DNMT3B. Extensive in vitro studies have investigated key properties of these enzymes, namely their substrate specificity and processivity. Here we study these properties in vivo, by applying novel statistical analysis methods to double-stranded DNA methylation patterns collected using hairpin-bisulfite PCR. Our analysis fits a novel Hidden Markov Model (HMM) to the observed data, allowing for potential bisulfite conversion errors, and yields statistical estimates of parameters that quantify enzyme processivity and substrate specificity. We apply this model to methylation patterns established in vivo at three loci in humans: two densely methylated inactive X (Xi)-linked loci ( and ), and an autosomal locus (), where methylation densities are tissue-specific but moderate. We find strong evidence for a high level of processivity of DNMT1 at and , with the mean association tract length being a few hundred base pairs. Regardless of tissue types, methylation patterns at are dominated by DNMT1 maintenance events, similar to the two Xi-linked loci, but are insufficiently informative regarding processivity to draw any conclusions about processivity at that locus. At all three loci we find that DNMT1 shows a strong preference for adding methyl groups to hemi-methylated CpG sites over unmethylated sites. The data at all three loci also suggest low (possibly 0) association of the de novo methyltransferases, the DNMT3s, and are consequently uninformative about processivity or preference of these enzymes. We also extend our HMM to reanalyze published data on mouse DNMT1 activities in vitro. The results suggest shorter association tracts (and hence weaker processivity), and much longer non-association tracts than human DNMT1 in vivo

    Errors in the bisulfite conversion of DNA: modulating inappropriate- and failed-conversion frequencies

    Get PDF
    Bisulfite treatment can be used to ascertain the methylation states of individual cytosines in DNA. Ideally, bisulfite treatment deaminates unmethylated cytosines to uracils, and leaves 5-methylcytosines unchanged. Two types of bisulfite-conversion error occur: inappropriate conversion of 5-methylcytosine to thymine, and failure to convert unmethylated cytosine to uracil. Conventional bisulfite treatment requires hours of exposure to low-molarity, low-temperature bisulfite (‘LowMT’) and, sometimes, thermal denaturation. An alternate, high-molarity, high-temperature (‘HighMT’) protocol has been reported to accelerate conversion and to reduce inappropriate conversion. We used molecular encoding to obtain validated, individual-molecule data on failed- and inappropriate-conversion frequencies for LowMT and HighMT treatments of both single-stranded and hairpin-linked oligonucleotides. After accounting for bisulfite-independent error, we found that: (i) inappropriate-conversion events accrue predominantly on molecules exposed to bisulfite after they have attained complete or near-complete conversion; (ii) the HighMT treatment is preferable because it yields greater homogeneity among sites and among molecules in conversion rates, and thus yields more reliable data; (iii) different durations of bisulfite treatment will yield data appropriate to address different experimental questions; and (iv) conversion errors can be used to assess the validity of methylation data collected without the benefit of molecular encoding

    Testing the FMR1 Promoter for Mosaicism in DNA Methylation among CpG Sites, Strands, and Cells in FMR1-Expressing Males with Fragile X Syndrome

    Get PDF
    Variability among individuals in the severity of fragile X syndrome (FXS) is influenced by epigenetic methylation mosaicism, which may also be common in other complex disorders. The epigenetic signal of dense promoter DNA methylation is usually associated with gene silencing, as was initially reported for FMR1 alleles in individuals with FXS. A paradox arose when significant levels of FMR1 mRNA were reported for some males with FXS who had been reported to have predominately methylated alleles. We have used hairpin-bisufite PCR, validated with molecular batch-stamps and barcodes, to collect and assess double-stranded DNA methylation patterns from these previously studied males. These patterns enable us to distinguish among three possible forms of methylation mosaicism, any one of which could explain FMR1 expression in these males. Our data indicate that cryptic inter-cell mosaicism in DNA methylation can account for the presence of FMR1 mRNA in some individuals with FXS

    Comparative genomics of the class 4 histone deacetylase family indicates a complex evolutionary history

    Get PDF
    BACKGROUND: Histone deacetylases are enzymes that modify core histones and play key roles in transcriptional regulation, chromatin assembly, DNA repair, and recombination in eukaryotes. Three types of related histone deacetylases (classes 1, 2, and 4) are widely found in eukaryotes, and structurally related proteins have also been found in some prokaryotes. Here we focus on the evolutionary history of the class 4 histone deacetylase family. RESULTS: Through sequence similarity searches against sequenced genomes and expressed sequence tag data, we identified members of the class 4 histone deacetylase family in 45 eukaryotic and 37 eubacterial species representative of very distant evolutionary lineages. Multiple phylogenetic analyses indicate that the phylogeny of these proteins is, in many respects, at odds with the phylogeny of the species in which they are found. In addition, the eukaryotic members of the class 4 histone deacetylase family clearly display an anomalous phyletic distribution. CONCLUSION: The unexpected phylogenetic relationships within the class 4 histone deacetylase family and the anomalous phyletic distribution of these proteins within eukaryotes might be explained by two mechanisms: ancient gene duplication followed by differential gene losses and/or horizontal gene transfer. We discuss both possibilities in this report, and suggest that the evolutionary history of the class 4 histone deacetylase family may have been shaped by horizontal gene transfers

    A comparative genomics multitool for scientific discovery and conservation

    Get PDF
    A whole-genome alignment of 240 phylogenetically diverse species of eutherian mammal-including 131 previously uncharacterized species-from the Zoonomia Project provides data that support biological discovery, medical research and conservation. The Zoonomia Project is investigating the genomics of shared and specialized traits in eutherian mammals. Here we provide genome assemblies for 131 species, of which all but 9 are previously uncharacterized, and describe a whole-genome alignment of 240 species of considerable phylogenetic diversity, comprising representatives from more than 80% of mammalian families. We find that regions of reduced genetic diversity are more abundant in species at a high risk of extinction, discern signals of evolutionary selection at high resolution and provide insights from individual reference genomes. By prioritizing phylogenetic diversity and making data available quickly and without restriction, the Zoonomia Project aims to support biological discovery, medical research and the conservation of biodiversity.Peer reviewe
    corecore