87 research outputs found

    A thoroughly validated spreadsheet for calculating isotopic abundances (H-2, O-17, O-18) for mixtures of waters with different isotopic compositions

    Get PDF
    RationaleOxygen and hydrogen stable isotopes are widely used tracers for studies on naturally occurring and laboratory mixtures of isotopically different waters. Although the mixing calculations are straightforward to perform, there are ample possibilities to make mistakes, especially when dealing with a large number of mixed fluids. To facilitate isotope mixing calculations and to avoid computational mistakes, a flexible tool to carry out these calculations is in demand.MethodsWe developed, in three independent efforts, spreadsheets to carry out the mixing calculations for a combination of waters with different isotopic compositions using the isotope mass balance equation. We validated our calculations by comparison of the results of the three spreadsheets for a large number of test calculations. For all the cases, we obtained identical results down to the 12(th) to 14(th) significant digit.ResultsWe present a user-friendly, thoroughly validated spreadsheet for calculating H-2, O-17 and O-18 stable isotopic abundances and respective isotope delta values for mixtures of waters with arbitrary isotopic compositions. The spreadsheet allows the mixing of up to 10 different waters, of which up to five can be specified using their isotopic abundances and up to five others using their isotope delta values. The spreadsheet is implemented in Microsoft Excel and is freely available from our research groups' websites.ConclusionsThe present tool will be applicable in the production and characterization of singly and doubly labeled water (DLW) mother solutions, the analysis of isotope dilution measurements, the deduction of unknown isotope values of constituents for mixtures of natural waters, and many other applications. Copyright (c) 2015 John Wiley &amp; Sons, Ltd.</p

    Performance assessment of nitrate leaching models for highly vulnerable soils used in low-input farming based on lysimeter data

    Full text link
    [EN] The agricultural sector faces the challenge of ensuring food security without an excessive burden on the environment. Simulationmodels provide excellent instruments for researchers to gainmore insight into relevant processes and best agricultural practices and provide tools for planners for decision making support. The extent to which models are capable of reliable extrapolation and prediction is important for exploring new farming systems or assessing the impacts of future land and climate changes. A performance assessmentwas conducted by testing six detailed state-of-the-artmodels for simulation of nitrate leaching (ARMOSA, COUPMODEL, DAISY, EPIC, SIMWASER/STOTRASIM, SWAP/ANIMO) for lysimeter data of the Wagna experimental field station in Eastern Austria, where the soil is highly vulnerable to nitrate leaching. Three consecutive phases were distinguished to gain insight in the predictive power of themodels: 1) a blind test for 2005 2008 in which only soil hydraulic characteristics, meteorological data and information about the agricultural management were accessible; 2) a calibration for the same period in which essential information on field observations was additionally available to the modellers; and 3) a validation for 2009 2011 with the corresponding type of data available as for the blind test. A set of statistical metrics (mean absolute error, root mean squared error, index of agreement,model efficiency, root relative squared error, Pearson's linear correlation coefficient) was applied for testing the results and comparing the models. None of the models performed good for all of the statistical metrics. Models designed for nitrate leaching in high-input farming systems had difficulties in accurately predicting leaching in low-input farming systems that are strongly influenced by the retention of nitrogen in catch crops and nitrogen fixation by legumes. An accurate calibration does not guarantee a good predictive power of the model. Nevertheless all models were able to identify years and crops with high- and low-leaching rates.This research was made possible by the GENESIS project of the EU 7th Framework Programme (Project No. 226536; FP7-ENV-2008-1). We are grateful for the experimental data provided by Joanneum Raum (Graz, Austria). The modelling team of Democritus University of Thrace would like to thank Per-Erik Jansson (Royal Institute of Technology, Stockholm, Sweden) for his valuable help during the application of Coup Model.Groenendijk, P.; Heinen, M.; Klammler, G.; Fank, J.; Kupfersberger, H.; Pisinaras, V.; Gemitzi, A.... (2014). Performance assessment of nitrate leaching models for highly vulnerable soils used in low-input farming based on lysimeter data. Science of the Total Environment. 499:463-480. https://doi.org/10.1016/j.scitotenv.2014.07.002S46348049

    Predicting land cover changes using a CA Markov model under different shared socioeconomic pathways in Greece

    No full text
    Land change modeling (LCM) is a complex GIS procedure aiming at predicting land cover changes in the future, contributing thus to the design of interventions that help maintain ecosystem services and mitigate climate change impacts. In the present work, the land change model for Greece, a typical Mediterranean country, has been developed, based on historical information from remotely sensed land cover data. Land cover types based on the International Geosphere-Biosphere Program (IGBP) classification were obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS) land cover product, i.e. MCD12Q1, provided annually from 2001 to 2018 at a spatial resolution of 500 m. Initially, the dominant land cover changes and their driving variables for the decade of 2001 to 2011 were determined and the transition potential of land was mapped using a multi-layer perceptron (MLP) neural network. Four dominant land-cover transformations were found in Greece from 2001 to 2011, i.e. land transformation from Savannas to Woody Savannas, from Savannas to Grasslands, from Grasslands to Savannas, and from Croplands to Grasslands. Driving variables were found to be the Evidence Likelihood of Land Cover, i.e. the relative frequency with which different land cover categories occurred within the areas that transitioned, the Altitude as realized in the Digital Elevation Model of Greece from ASTER GDEM, the Distance from previously changed land and two climate variables i.e. Mean Annual Precipitation and Mean Annual Minimum Temperature. After the model was calibrated, its predictive ability was tested for land cover prediction for 2018 and was found to be 96.7%. Future land cover projections up to 2030 were developed incorporating CMIP6 climate data under two Shared Socioeconomic Pathways (SSPs), i.e SSP126 corresponding to a sustainable future and SSP585, which describes the future world based on fossil-fueled development. The results indicate that major historical land transformations in Greece, do not correspond to land degradation or desertification, as it has been reported in previous works. On the contrary, the land cover transitions indicate that the Woody Savannas gain areas constantly, whereas Grasslands and Croplands lose areas, and forested areas of all types demonstrate moderate gains. Concerning future land cover, the present work indicates that the direction of historical changes will also prevail in the next decade, with the most severe scenario, i.e. SSP585 slowing down the rate of changes and the most sustainable one, i.e. SSP126, accelerating the rate of expansion of woody vegetation land cover type

    A Spatial Downscaling Methodology for GRACE Total Water Storage Anomalies Using GPM IMERG Precipitation Estimates

    No full text
    A downscaling framework for coarse resolution Gravity Recovery and Climate Experiment (GRACE) Total Water Storage Anomaly (TWSA) data is described, exploiting the observations of precipitation from the Global Precipitation Measurement (GPM) mission, using the Integrated Multi-satellite Retrievals for GPM (IMERG). Considering that the major driving force for changes in TWS is precipitation, we tested our hypothesis that coarse resolution, i.e., 1&deg;, GRACE TWSA can be effectively downscaled to 0.1&deg; using GPM IMERG data. The algorithm for the downscaling process comprises the development of a regression equation at the coarse resolution between the GRACE and GPM IMERG data, which is then applied at the finer resolution with a subsequent residual correction procedure. An ensemble of GRACE data from three processing centers, i.e., GFZ, JPL and CSR, was used for the time period from June 2018 until March 2021. To verify our downscaling methodology, we applied it with GRACE data from 2005 to 2015, and we compared it against modeled TWSA from two independent datasets in the Thrace and Thessaly regions in Greece for the same period and found a high performance in all examined metrics. Our research indicates that the downscaled GRACE observations are comparable to the TWSA estimated with hydrological modeling, thus highlighting the potential of GRACE data to contribute to the improvement of hydrological model performance, especially in ungauged basins

    Downscaled GRACE-FO TWSA for Greece

    No full text
    The dataset comprises GRACE-FO downscaled Total Water Storage Anomalies, at 0.1 degrees spatial resolution. Units are in mm with reference the 2004 - 2009 period. Abstract: A downscaling framework for coarse resolution Gravity Recovery and Climate Experiment (GRACE) Total Water Storage Anomaly (TWSA) data is described, exploiting the observations of precipitation from the Global Precipitation Measurement (GPM) mission, using the Integrated Multisatellite Retrievals for GPM (IMERG). Considering that the major driving force for changes in TWS is precipitation, we tested our hypothesis that coarse resolution, i.e., 1â—¦, GRACE TWSA can be effectively downscaled to 0.1â—¦ using GPM IMERG data. The algorithm for the downscaling process comprises the development of a regression equation at the coarse resolution between the GRACE and GPM IMERG data, which is then applied at the finer resolution with a subsequent residual correction procedure. An ensemble of GRACE data from three processing centers, i.e., GFZ, JPL and CSR, was used for the time period from June 2018 until March 2021. To verify our downscaling methodology, we applied it with GRACE data from 2005 to 2015, and we compared it against modeled TWSA from two independent datasets in the Thrace and Thessaly regions in Greece for the same period and found a high performance in all examined metrics. Our research indicates that the downscaled GRACE observations are comparable to the TWSA estimated with hydrological modeling, thus highlighting the potential of GRACE data to contribute to the improvement of hydrological model performance, especially in ungauged basins.THIS DATASET IS ARCHIVED AT DANS/EASY, BUT NOT ACCESSIBLE HERE. TO VIEW A LIST OF FILES AND ACCESS THE FILES IN THIS DATASET CLICK ON THE DOI-LINK ABOV
    • …
    corecore