60 research outputs found

    Faster quantitative real-time PCR protocols may lose sensitivity and show increased variability

    Get PDF
    Quantitative real-time PCR has become the method of choice for measuring mRNA transcription. Recently, fast PCR protocols have been developed as a means to increase assay throughput. Yet it is unclear whether more rapid cycling conditions preserve the original assay performance characteristics. We compared 16 primer sets directed against Epstein–Barr virus (EBV) mRNAs using universal and fast PCR cycling conditions. These primers are of clinical relevance, since they can be used to monitor viral oncogene and drug-resistance gene expression in transplant patients and EBV-associated cancers. While none of the primers failed under fast PCR conditions, the fast PCR protocols performed worse than universal cycling conditions. Fast PCR was associated with a loss of sensitivity as well as higher variability, but not with a loss of specificity or with a higher false positive rate

    Genome-wide real-time PCR for West Nile virus reduces the false-negative rate and facilitates new strain discovery

    Get PDF
    West-Nile virus (WNV) causes significant morbidity and mortality worldwide. Transplant and transfusion recipients as well as the elderly are particularly at risk. WNV shows strain variation from season to season and from locale to locale. This poses a significant problem for diagnosis. Most assays use a single primer pair to detect WNV by QPCR, and can fail to detect novel stains. To overcome this limitation, a genome-wide, multiple primer-based real-time QPCR assay was developed for WNV. The same assay can be used for quantitation, viral variant discovery as well as for amplification of the entire viral genome using a single annealing temperature. It improves upon routine diagnosis as well as facilitates laboratory investigations of the pathology of WNV

    Nuclear factor kappa B pathway associated biomarkers in AIDS defining malignancies

    Get PDF
    The Nuclear Factor kappa B (NFkB) pathway is essential for many human cancers. Therapeutics such as bortezomib (Velcade™), which interfere with nuclear factor NF-kappa-B(NFkB)signaling are of great clinical interest. NFkB signaling, however, is multifaceted and variable among tissues, developmental, and disease entities. Hence, targeted biomarkers of NFkB pathways are of prime importance for clinical research. We developed a novel real-time qPCR-based NFkB array. Only mechanistically validated NFkB targets were included. We then used random-forest classification to define individual genes and gene combinations within the NFkB pathways that define viral lymphoma subclasses as well as Kaposi sarcoma (KS). Few NFkB targets emerged that were universally present in all tumor types tested, underscoring the need for additional tumor-type specific biomarker discovery. (i) We uncovered tissue of origin-specific tumor markers, specifically CD69, CSF-1, and complement factor B (C1QBP)for PEL; IL1-beta, cyclinD3 and CD48for KS. We found that IL12, jun-B, msx-1 and thrombospondin 2 were associated with EBV co-infection in PEL. (ii) We defined the NFkB signature of Epstein-Barr virus (EBV)positive AIDS-associated Burkitt lymphoma(BL). This signature identified CCR5 as the key marker. (iii) This signature differed from EBV negative BL consistent with the idea that EBV not only activates NFkB activity but that this virus also reprograms NFkB signaling towards different targets

    High-Density Amplicon Sequencing Identifies Community Spread and Ongoing Evolution of SARS-CoV-2 in the Southern United States

    Get PDF
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is constantly evolving. Prior studies focused on high-case-density locations, such as the northern and western metropolitan areas of the United States. This study demonstrates continued SARS-CoV-2 evolution in a suburban southern region of the United States by high-density amplicon sequencing of symptomatic cases. 57% of strains carry the spike D614G variant, which is associated with higher genome copy numbers, and its prevalence expands with time. Four strains carry a deletion in a predicted stem loop of the 3′ UTR. The data are consistent with community spread within local populations and the larger continental United States. The data instill confidence in current testing sensitivity and validate “testing by sequencing” as an option to uncover cases, particularly nonstandard coronavirus disease 2019 (COVID-19) clinical presentations. This study contributes to the understanding of COVID-19 through an extensive set of genomes from a non-urban setting and informs vaccine design by defining D614G as a dominant and emergent SARS-CoV-2 isolate in the United States

    Role of dexamethasone dosage in combination with 5-HT3 antagonists for prophylaxis of acute chemotherapy-induced nausea and vomiting

    Get PDF
    Dexamethasone (20 mg) or its equivalent in combination with 5-HT3 antagonists appears to be the gold-standard dose for antiemetic prophylaxis. Additional to concerns about the use of corticosteroids with respect to enhanced tumour growth or impaired killing of the tumour cells, there is evidence that high-dosage dexamethasone impairs the control of delayed nausea and emesis, whereas lower doses appear more beneficial. To come closer to the most adequate dose, we started a prospective, single-blind, randomized trial investigating additional dosage of 8 or 20 mg dexamethasone to tropisetron (Navoban), a 5-HT3 receptor antagonist, in cis-platinum-containing chemotherapy. After an interim analysis of 121 courses of chemotherapy in 69 patients, we have been unable to detect major differences between both treatment alternatives. High-dose dexamethasone (20 mg) had no advantage over medium-dose dexamethasone with respect to objective and subjective parameters of acute and delayed nausea and vomiting. In relation to concerns about the use of corticosteroids in non-haematological cancer chemotherapy, we suggest that 8 mg or its equivalent should be used in combination with 5-HT3 antagonists until further research proves otherwise. © 1999 Cancer Research Campaig

    Viral Profiling Identifies Multiple Subtypes of Kaposi's Sarcoma

    Get PDF
    ABSTRACTKaposi’s sarcoma (KS), caused by KS-associated herpesvirus (KSHV), is the most common cancer among HIV-infected patients in Malawi and in the United States today. In Malawi, KSHV is endemic. We conducted a cross-sectional study of patients with HIV infection and KS with no history of chemo- or antiretroviral therapy (ART). Seventy patients were enrolled. Eighty-one percent had T1 (advanced) KS. Median CD4 and HIV RNA levels were 181cells/mm3 and 138,641 copies/ml, respectively. We had complete information and suitable plasma and biopsy samples for 66 patients. For 59/66 (89%) patients, a detectable KSHV load was found in plasma (median, 2,291 copies/ml; interquartile range [IQR], 741 to 5,623). We utilized a novel KSHV real-time quantitative PCR (qPCR) array with multiple primers per open reading frame to examine KSHV transcription. Seventeen samples exhibited only minimal levels of KSHV mRNAs, presumably due to the limited number of infected cells. For all other biopsy samples, the viral latency locus (LANA, vCyc, vFLIP, kaposin, and microRNAs [miRNAs]) was transcribed abundantly, as was K15 mRNA. We could identify two subtypes of treatment-naive KS: lesions that transcribed viral RNAs across the length of the viral genome and lesions that displayed only limited transcription restricted to the latency locus. This finding demonstrates for the first time the existence of multiple subtypes of KS lesions in HIV- and KS-treatment naive patients.IMPORTANCEKS is the leading cancer in people infected with HIV worldwide and is causally linked to KSHV infection. Using viral transcription profiling, we have demonstrated the existence of multiple subtypes of KS lesions for the first time in HIV- and KS-treatment-naive patients. A substantial number of lesions transcribe mRNAs which encode the viral kinases and hence could be targeted by the antiviral drugs ganciclovir or AZT in addition to chemotherapy

    SeqAn An efficient, generic C++ library for sequence analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The use of novel algorithmic techniques is pivotal to many important problems in life science. For example the sequencing of the human genome <abbrgrp><abbr bid="B1">1</abbr></abbrgrp> would not have been possible without advanced assembly algorithms. However, owing to the high speed of technological progress and the urgent need for bioinformatics tools, there is a widening gap between state-of-the-art algorithmic techniques and the actual algorithmic components of tools that are in widespread use.</p> <p>Results</p> <p>To remedy this trend we propose the use of SeqAn, a library of efficient data types and algorithms for sequence analysis in computational biology. SeqAn comprises implementations of existing, practical state-of-the-art algorithmic components to provide a sound basis for algorithm testing and development. In this paper we describe the design and content of SeqAn and demonstrate its use by giving two examples. In the first example we show an application of SeqAn as an experimental platform by comparing different exact string matching algorithms. The second example is a simple version of the well-known MUMmer tool rewritten in SeqAn. Results indicate that our implementation is very efficient and versatile to use.</p> <p>Conclusion</p> <p>We anticipate that SeqAn greatly simplifies the rapid development of new bioinformatics tools by providing a collection of readily usable, well-designed algorithmic components which are fundamental for the field of sequence analysis. This leverages not only the implementation of new algorithms, but also enables a sound analysis and comparison of existing algorithms.</p

    Brachytherapy for cervix cancer: low-dose rate or high-dose rate brachytherapy – a meta-analysis of clinical trials

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The literature supporting high-dose rate brachytherapy (HDR) in the treatment of cervical carcinoma derives primarily from retrospective series. However, controversy still persists regarding the efficacy and safety of HDR brachytherapy compared to low-dose rate (LDR) brachytherapy, in particular, due to inadequate tumor coverage for stage III patients. Whether LDR or HDR brachytherapy produces better results for these patients in terms of survival rate, local control rate and the treatment complications remain controversial.</p> <p>Methods</p> <p>A meta-analysis of RCT was performed comparing LDR to HDR brachytherapy for cervix cancer treated for radiotherapy alone. The MEDLINE, EMBASE, CANCERLIT and Cochrane Library databases, as well as abstracts published in the annual proceedings were systematically searched. We assessed methodological quality for each outcome by grading the quality of evidence using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) methodology. We used "recommend" for strong recommendations, and "suggest" for weak recommendations.</p> <p>Results</p> <p>Pooled results from five randomized trials (2,065 patients) of HDR brachytherapy in cervix cancer showed no significant increase of mortality (p = 0.52), local recurrence (p = 0.68), or late complications (rectal; p = 0.7, bladder; p = 0.95 or small intestine; p = 0.06) rates as compared to LDR brachytherapy. In the subgroup analysis no difference was observed for overall mortality and local recurrence in patients with clinical stages I, II and III. The quality of evidence was low for mortality and local recurrence in patients with clinical stage I, and moderate for other clinical stages.</p> <p>Conclusion</p> <p>Our meta-analysis shows that there are no differences between HDR and LDR for overall survival, local recurrence and late complications for clinical stages I, II and III. By means of the GRADE system, we recommend the use of HDR for all clinical stages of cervix cancer.</p
    • …
    corecore