365 research outputs found

    Terahertz oscillation and stimulated emission from planar microcavities

    Get PDF
    In the past decades, the miniaturization in optics led to new devices with structural sizes in the range of the light wavelength, where the photonic modes are con- fined and the number of states is limited. In the smallest microcavities, i.e. micrometer sized optical resonators, the propagation of only one mode is permitted that is simultaneously amplified internally. This particularly strong enhancement of the electric field is directly related to the quality factor of the cavity. By introducing an optical dipole into a high-Q microcavity, the spontaneous emission is amplified at the cavity mode frequency enabling stimulated emission in an inverted system. Although some of theses cavity e®ects can only be understood by quantum elec- trodynamic theory, most mechanisms are accessible by classical and semi-classical approaches. In this thesis, one-dimensional planar microcavities with quality factors up to 4500 have been fabricated by physical vapor deposition of dielectric thin films and organic active materials. A new cavity design based on anisotropic dielectric mirrors grown by oblique angle deposition microcavities with two energetically shifted orthogonally polarized modes is presented. The application of these anisotropic structures for terahertz di®erence signal generation is demonstrated in spectrally and time resolved transmission experiments, where optical beats with repetition rates in the terahertz range are observed. Optically pumped organic vertical cavity surface emitting lasers (VCSELs) have been realized by applying an organic solid state laser compound and high reflectance distributed Bragg reflectors. These lasers combine a very low laser threshold with small beam divergence and good stability. A transfer of the anisotropic design towards an organic VCSEL results in the generation of two perpendicularly polarized laser modes with a splitting adjustable by the fabrication conditions. The observation of an oscillation of two laser modes in a photomixing experiment proves a phase coupling mechanism. This demonstrates the potential of the anisotropic cavity design for a passive or active component in a terahertz radiation source or frequency generator. Furthermore, microcavities with two and three coupled resonators are investigated. By the application of time-resolved transmission experiments, spatial oscil- lations of the internal electric field - photonic Bloch oscillations - are successfully demonstrated. In combination with the anisotropic microcavities, this is a second concept for the modulation of transmitted light with terahertz frequencies. All experiments are accompanied by numerical or analytical models. Transmission experiments of continuously incident light and single laser pulses are compared with transfer matrix simulations and Fourier transform based approaches. For the modeling of emission experiments, a plane wave expansion method is successfully used. For the analysis of the organic VCSEL dynamics, we apply a set of rate equations that explains the gain switching process

    Markierung von Regenbogenforellen in Eckernförde

    Get PDF

    Radiation-Induced Graft Immobilization (RIGI): Covalent Binding of Non-Vinyl Compounds on Polymer Membranes

    Get PDF
    Radiation-induced graft immobilization (RIGI) is a novel method for the covalent binding of substances on polymeric materials without the use of additional chemicals. In contrast to the well-known radiation-induced graft polymerization (RIGP), RIGI can use non-vinyl compounds such as small and large functional molecules, hydrophilic polymers, or even enzymes. In a one-step electron-beam-based process, immobilization can be performed in a clean, fast, and continuous operation mode, as required for industrial applications. This study proposes a reaction mechanism using polyvinylidene fluoride (PVDF) and two small model molecules, glycine and taurine, in aqueous solution. Covalent coupling of single molecules is achieved by radical recombination and alkene addition reactions, with water radiolysis playing a crucial role in the formation of reactive solute species. Hydroxyl radicals contribute mainly to the immobilization, while solvated electrons and hydrogen radicals play a minor role. Release of fluoride is mainly induced by direct ionization of the polymer and supported by water. Hydrophobic chains attached to cations appear to enhance the covalent attachment of solutes to the polymer surface. Computational work is complemented by experimental studies, including X-ray photoelectron spectroscopy (XPS) and fluoride high-performance ion chromatography (HPIC)

    Structural bias in population-based algorithms

    Get PDF
    Challenging optimisation problems are abundant in all areas of science and industry. Since the 1950s, scientists have responded to this by developing ever-diversifying families of 'black box' optimisation algorithms. The latter are designed to be able to address any optimisation problem, requiring only that the quality of any candidate solution can be calculated via a 'fitness function' specific to the problem. For such algorithms to be successful, at least three properties are required: (i) an effective informed sampling strategy, that guides the generation of new candidates on the basis of the fitnesses and locations of previously visited candidates; (ii) mechanisms to ensure efficiency, so that (for example) the same candidates are not repeatedly visited; and (iii) the absence of structural bias, which, if present, would predispose the algorithm towards limiting its search to specific regions of the solution space. The first two of these properties have been extensively investigated, however the third is little understood and rarely explored. In this article we provide theoretical and empirical analyses that contribute to the understanding of structural bias. In particular, we state and prove a theorem concerning the dynamics of population variance in the case of real-valued search spaces and a 'flat' fitness landscape. This reveals how structural bias can arise and manifest as non-uniform clustering of the population over time. Critically, theory predicts that structural bias is exacerbated with (independently) increasing population size, and increasing problem difficulty. These predictions, supported by our empirical analyses, reveal two previously unrecognised aspects of structural bias that would seem vital for algorithm designers and practitioners. Respectively, (i) increasing the population size, though ostensibly promoting diversity, will magnify any inherent structural bias, and (ii) the effects of structural bias are more apparent when faced with (many classes of) 'difficult' problems. Our theoretical result also contributes to the 'exploitation/exploration' conundrum in optimisation algorithm design, by suggesting that two commonly used approaches to enhancing exploration - increasing the population size, and increasing the disruptiveness of search operators - have quite distinct implications in terms of structural bias

    An embedded interfacial network stabilizes inorganic CsPbI<sub>3</sub> perovskite thin films

    Get PDF
    The black perovskite phase of CsPbI(3) is promising for optoelectronic applications; however, it is unstable under ambient conditions, transforming within minutes into an optically inactive yellow phase, a fact that has so far prevented its widespread adoption. Here we use coarse photolithography to embed a PbI(2)-based interfacial microstructure into otherwise-unstable CsPbI(3) perovskite thin films and devices. Films fitted with a tessellating microgrid are rendered resistant to moisture-triggered decay and exhibit enhanced long-term stability of the black phase (beyond 2.5 years in a dry environment), due to increasing the phase transition energy barrier and limiting the spread of potential yellow phase formation to structurally isolated domains of the grid. This stabilizing effect is readily achieved at the device level, where unencapsulated CsPbI(3) perovskite photodetectors display ambient-stable operation. These findings provide insights into the nature of phase destabilization in emerging CsPbI(3) perovskite devices and demonstrate an effective stabilization procedure which is entirely orthogonal to existing approaches

    Pinhole-free perovskite films for efficient solar modules

    Get PDF
    We report on a perovskite solar module with an aperture area of 4 cm2 and geometrical fill factor of 91%. The module exhibits an aperture area power conversion efficiency (PCE) of 13.6% from a current–voltage scan and 12.6% after 5 min of maximum power point tracking. High PCE originates in pinhole-free perovskite films made with a precursor combination of Pb(CH3CO2)2·3H2O, PbCl2, and CH3NH3I
    corecore