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Abstract

Challenging optimisation problems are abundant in all su@fascience and
industry. Since the 1950s, scientists have responded 2dthieveloping ever-
diversifying families of 'black box’ optimisation algohtms. The latter are de-
signed to be able to address any optimisation problem, nieguonly that the
quality of any candidate solution can be calculated via aeéfs function’ specific
to the problem. For such algorithms to be successful, at these properties are
required: (i) an effective informed sampling strategy,t thaides the generation
of new candidates on the basis of the fithesses and locatigedously visited
candidates; (ii) mechanisms to ensure efficiency, so tlatefample) the same
candidates are not repeatedly visited; (iii) the absentrattural bias, which, if
present, would predispose the algorithm towards limittsgearch to specific re-
gions of the solution space. The first two of these propehi@e® been extensively
investigated, however the third is little understood anelyaexplored. In this
article we provide theoretical and empirical analyses toatribute to the under-
standing of structural bias. In particular, we state and@m@theorem concerning
the dynamics of population variance in the case of realedkearch spaces and
a 'flat’ fitness landscape. This reveals how structural béasarise and manifest
as non-uniform clustering of the population over time. iCailly, theory predicts
that structural bias is exacerbated with (independemigieasing population size,
and increasing problem difficulty. These predictions, sufggl by our empiri-
cal analyses, reveal two previously unrecognised aspédfuxtural bias that
would seem vital for algorithm designers and practitiondRespectively, (i) in-
creasing the population size, though ostensibly promatfiagrsity, will magnify
any inherent structural bias, and (i) the effects of stitaitbias are more apparent
when faced with (many classes of) ‘difficult’ problems. Oledretical result also
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contributes to the 'exploitation/exploration’ conundrimoptimization algorithm
design, by suggesting that two commonly used approacheshianeing explo-
ration — increasing the population size, and increasingligreiptiveness of search
operators — have quite distinct implications in terms afictural bias.

1 Introduction

Successful implementation of any randomised populat@set optimisation algo-
rithm depends on the efficiency of both its sampling compbaed exploitation of pre-
viously sampled information. Among other fields, Evoluioy Computation (EC)[1]
provides various examples of randomised population-bssarth strategies. Greatly
simplified, any evolutionary computation algorithm is adgpd re-sampling strategy
where movement of points is directed by its operators &sbiby selection criteria
based on currently attained values of the objective functiovast body of research in
the field of Evolutionary Computation deals with efficienp&itation of information
already contained within the populatién [2] while littlagition has been paid to inves-
tigation of whether or not a specific combination of alganth operators is actually
capable of reaching all parts of the search space efficiertig paper attempts to draw
attention to this issue and starts to investigate the Igtiestion.

Inspection of recent literaturgl[3[.1[4].][5].][6] confirmiset presence of a tendency
to (over-)complicate both the design of individual algionitic operators and the logic of
their assembly, counter to the rationale of the well-knovac®@n’s razdt, sometimes
to such a degree that the end result turns out to be intr&ctRiglsearchers seem regu-
larly to be swayed by an attraction towards "multiplyingiges beyond necessity”. We
suggest that a materially greater contribution to the wstdading of population-based
algorithms and their design can be obtained via 'going badiessics’. More specifi-
cally, the great majority of optimisation algorithms falithin a class of generate-and-
test methods, iteratively alternating between these twopmments until a termination
criterion is met. Ideally, the generating/sampling comgratrof such methods should
have the following characteristids [8]:

1. future samples should be biassed by information obtdimmed previously vis-
ited points, i.e., the algorithm should bdormed

2. future samples should be previously unvisited sampgeghe algorithm should
benon-redundant

3. every solution in the search space should be equally sibbege., the algorithm
should becomplete

Itis worth noting our use of the phrasgqually accessibleithin the 'completeness’
characteristic. Often, for example, algorithm designeay e subconsciously swayed
by the fact that the randomness of the initialisation preceeans that every part of the
search space igachableand hence feel no further need to consider this charatiteris

10riginally attributed to William of Occam, reformulated Betrand Russell as "Whenever possible,
substitute constructions out of known entities for infe@snto unknown entities.[[7]



Reachability and completeness (the way we define it herd)@xever very different.
For example, if a stochastic hill-climbing algorithm indkes a uniform random ini-
tialisation inR™, then all points are reachable, however if the perturbatjperator is

designed to add only integer-valued vectors, then therexreme variations in the
accessibilities of different points in the space.

Clearly, evolutionary computation methods build richlyongheir 'generate-and-
test’ backbone architecture. However the above guidelie@sin valid, and, in prac-
tice, they translate well into rules for algorithm designheTfirst two properties —
informedness and non-redundancy in the sampling proceage-tieen extensively re-
searched, each from a variety of viewpoints. To some extentever, contributions
related to these two properties have appeared in diverseiacahnected literature,
using varying terminology, and there remains a need toigedatissimilate their find-
ings.

For example, with sufficient imagination one can see thaifriff@mednesgrop-
erty is closely linked to the concepts of exploration, eigkion, and their balance,
which is considered to be primary in the behaviour of evohairy algorithms (EAS),
as examples of stochastic "generate-and-test” method<£jgjloration and exploita-
tion are fundamental for evolutionary optimisatich [1] butprisingly, several decades
after the first examples of EAs have been proposed, theyestied even a proper def-
inition. Over the following years, a lot of research has begmied out in this direction
- the latest survey of results can be found[ih [2]. The curcemsensus definitions
considerexplorationas the process of visiting entirely new regions of a seareleesp
whilst exploitationas the process of visiting those regions of a search spah\lie
neighbourhood of previously visited poinis [2].

The second characteristicon-redundancyhas been investigated under the guise
of 'non-revisiting’ algorithms. Inspired by ideas from Takearch[[100],[[11], basic
evolutionary algorithms have been extended to ensure theeasiting property[12],
[13], [14]. Another direction of research into the non-radancy property is the study
of diversity management in evolving populations. Diversit populations can refer
to differences in solutions in either the values of coortéeg'genotypic’ diversity) or
the objective function ('phenotypic’ diversity). To datey single measure exists which
can suitably characterise diversity in the face of all kinflsroblems and search logics
[15). The situation is further complicated by the fact thatieerse population offers
benefits at some stages of evolutionary process (helps pv@mature convergence to
local optima) and creates obstacles in others (impede®igxiidn) [16]. The most
popular diversity-preserving mechanisms include [17hirig, crowding, restricted
mating, sharing, multiploidy, elitism, injection, altextive replacement strategiés [18]
and fitness uniform selection [19].

Much promising research is also carried out that tries tdaggphe connections
betweeninformednessandnon-redundancystemming from the fact that exploration
of the search space is only possible if populations are sivenough'[2]. However,
different amounts of exploration and exploitation are regkfr different optimisation
problems. Currently there are no accepted techniques fectdineasurement of this
balance; it can only be noisily sensed via a proxy (such asllef diversity’). Feed-
back from online monitoring of such a proxy, if it is suitaldgmputationally efficient,
can then be used to dynamically tilt the exploration-expltn balance]2]120]/21].



Meanwhile, in recent decades, the third important propafrthe generating com-
ponent, which we can catompletenesshas been treated as an obscure topic and
largely ignored by modern research efforts - the latestreefee to this issue[ [22],
briefly deals with the accessibility of a solution througlokeion as a necessary con-
dition for reaching the optimum by a genetic algorithm in thiscrete case. To the
best of our knowledge, no research related to this properttye real-valued case has
been published until a rather recent revival of interest¢tnaely related topic. A pop-
ular belief [23], [24] — that many population-based aldurit tend to perform better
when the true optimum is located at or near the centre of tiialisation region —
has recently sparked the interest of a small group of reseesavho have explored
this phenomenon in the context of specific variants of PSOemhe initialisation
region is centred around the origin, this phenomenon ignedeo as 'origin-seeking
bias’. To date, there is little or no evidence to support thespnce of such a bias
in the general case. Having investigated the effects of fyindj the search domains
of three benchmark problems on results produced by an uhuatant of PSO, the
authors of [[25] concluded the presence of origin-seekirg In their specific algo-
rithm/problem scenarios, and suggested that their resoiltkl be generalised towards
all population-based methods. However these results wiredisputed and have been
largely dismissed [26]. As regards theoretical analysihefmovement of particles in
a PSO swarm, a study of particle trajectorfes [27] reveasuhder certain conditions
every particle converges to a stable point defined by itsopaisand global best posi-
tions, with weights determined by the acceleration coeffits. Experimental results
also suggest that, for the well-knowphereobjective function, the movement of par-
ticles is influenced by the direction of the coordinate axsol potentially makes the
algorithm sensitive to rotation of the objective functi@8]. Further theoretical analy-
sis [29] indicates that there is an angular bias in the cof@ &§orithm which consists
of two parts. The first part, skew, pushes particles towaedsihgs parallel with the
diagonals, meanwhile the second part, spread, indicaté¢ésdthgonal directions are
highly unstable. The combination of the two parts createS@ Bias that favours par-
ticle bearings that are aligned with the coordinate axe® l@test publication on this
topic [30] extends the work froni [25] and proposes a metriccientre-seeking and
initialisation biases based on multiple re-runs of the atgm in modified domains.

The majority of authors implicitly suppose their algoriteifare well in the abil-
ity to potentially cover the whole search domain. Put anotiey, researchers tend
to take for granted the property of 'completeness’. Sucletgewnfidence about this
property probably stems from the perception that, giverstbehastic nature of stan-
dard initialisation methods and standard operators, atspzf the search space are
reachable However, this ignores the prospect that reachability ntayadly be highly
non-uniform across the search space. Results presenteid jpejper demonstrate that
even the most commonly used algorithms exhibit inhererfepeaces towards certain
parts of the search domain. We refer to this preference astthetural biasof the
algorithm.

To help illustrate the concept of structural bias, it may bipful to imagine a pin-
ball machine where a player has to operate a system of mechalevices to allow a
ball to stay on the game surface as long as possible befdiregtite drain, see Figl 1.
We can consider the whole system — the pinball machine anddtiens of the player



Figure 1: A typical pinball machine

— to represent an algorithm, while the ball represents aisoltravelling around the
search space. We can conceptualise multiple games on suelttana, overlapped
in time, to represent the case of an algorithm that maintipspulation of solutions.
In the ideal case, the population should be able to accesantire game surface. A
population-based algorithm exhibiting structural biathisn replicated by an overlap-
ping in time of such machines which are unfairly tilted at sommgle. Clearly, evenin
this case the actions of the player have a certain effect@mibtvement of the balls.
However, due to gravity, the ball ends up constantly rolliaghe lower side of the
machine i.e., exhibiting a certain preference and limiting overall coverage of the
game surface.

The remainder of the paper is arranged as follows. In Sefiore argue that
studying the structural bias that may be inherent in an @lgarcan be facilitated by
decoupling the effects of the search landscape from theitiiguc operations. This
section then introduces and analyses a test fungijpwhich allows such decoupling.
Sectior B takes the functiofy and uses it as a 'structural bias probe’, presenting sev-
eral experiments in which we investigate whether struttoiess seems to be present
in typical designs of a genetic algorithm and a particle ssaptimisation algorithm.
Visualisations of the results of our experiments in thigisewffer evidence that struc-
tural bias is indeed present in these algorithms, and sems$it parameters such as
population size. This section ends with remarks concerpseudorandom number
generators, in particular those used in our implementatiod offers evidence — fol-
lowing further empirical investigation — that supports tew that our observations in



the previous section were uncontaminated by artefacteqgfskudorandom generator.
In Sectiorl# we turn to a theoretical investigation, whichsiders a simplified genetic
algorithm process (nevertheless capturing well the belaaf a typical genetic algo-
rithm on f). The theorem proved in this section shows that the consitigimplified
but otherwise standard) algorithm design will, under derbait unexceptional condi-
tions, induce a continual reduction in sample variance tiweg; this means that the
population will increasingly cluster around certain arebthe domain while avoiding
others. Reasoning based on the theorem leads to expestafitime relationship be-
tween a genetic algorithm’s population size and the ocageef structural bias, which
match our empirical findings from Sectibh 3; further reasgriredicts a relationship
between structural bias and problem difficulty, which isedsn the experiments of the
next section. Sectidd 5 begins by outlining and demonsgatpproaches to visually
investigate, and then to quantify, the levels of structbras inherent in the design of
an optimization algorithm. This is followed by an examioatof how structural bias
seems to manifest differently when we apply our standaretyealgorithm to variety
of functions from a well-known test suite. The findings fradmese experiments again
match with theory-grounded expectations arising from eguments in Sectidn 4. Fi-
nally, Sectiorl b provides a summary of the paper, and brigfudisions of its wider
relevance, such as the manifestation of structural biasrimbinatorial spaces.

2 Structural bias

When faced with the task of optimising a given function, theoant of information
usually available regarding its features is highly limitddherefore, one wishes to de-
sign an algorithm capable of locating the optima no mattegretexactly they are in
the search space. This implies that the generating opsratahe algorithm must be
able to, first, reach every region of the search space andhdgim®eally, do so with-
out imposing any preferences for some regions of the doman athers. Clearly,
different functions and domains give rise to different aftans, greatly complicating
the prospects for a general theoretical analysis. In addisuch an analysis cannot
be tackled directly due to the apparent coupling betweerahdscape of the ob-
jective function and artefacts from the iterative applimatof algorithmic operators
i.e., structural bias. It is therefore highly desirable &dble to separate these effects.
A closer inspection reveals that, in almost all cases, ttiermof a selection operator
actually can be characterised as the imposition of a sttichrask-ordering over a spe-
cific set of values of the objective function in the currenpplation. If we replaced the
objective function with uniform random noise, over a senéstatistically significant
number of independent runs, this would enable us to septaatscape effects’ from
"algorithm design effects’, eliminating the influence ogtfigeographical”) position
of selected points, but retaining algorithmic artefacts.

Therefore, one way to overcome this coupling issue is to tlse rhost random”
test function, such that its value at any point does depeeitisar on the values within
its neighbourhood nor on the past (independent) evalusaabthis point i.e., be inde-
pendent and identically distributed (i.i.d.). For the saksimplicity, and without loss



(a) beginning (b) halfway through (c) end

Figure 2: Sketch of a typical progress of an evolutionaryatgm on a minimisa-
tion problem in terms of population distribution with prof@ns of points’ coordinate,
adapted from1]. Red points mark best points in the poputati

of generality, we can consider an artificial objective fumact

fo: D CR" = [0,1], wherex € Uniform(D), fo(x) € Uniforml0,1], 2 and fo(z) are i.i.d.
1)

as this "most random” function. Again, without loss of geality, we can consider

D = [0,1]™. Such anf, contains no structure stable over different runs, theeséor

ideal optimisation methodvill arrive at different regions of the search space over a

series of runs. Indeed, over multiple runs, it will cover drgire search space with

uniform probability.

As shown in Fig[R, the typical progress of a capable evahatip algorithm con-
sists of three stagesi[1]: in the beginning, the populasospread randomly over the
domain, roughly halfway through the optimisation the papioh starts rolling down
the hill, and in the final stages of optimisation the whole ydafion is concentrated
around the minima. Thanks to the constructionfgfindependent runs of the algo-
rithm provide different landscapes, all of identical diffity (due to the i.i.d. property),
where populations move/converge towards minima locateédfatent parts of the do-
main. In other words, over a series of runs of the algoritta situation shown in Fig.
[Ris replicated for different landscapes where the optititingprocess arrives at differ-
ent parts of the domain - that is, red points will be distréalall over the interval. In
the following section we show that minima @f are in fact distributed uniformly over
D. This implies that the distribution of minima found by anadlenbiased algorithm
across different runs should be uniform as well.

2.1 Distribution of minima of f

Assume that point&, ..Zy are independent and identically distributed. Assume that
each of these points (sa¥;) is assigned a marK; and assume thaX;, X, .., Xy

is a collection of i.i.d. random variables with an absoljtebntinuous distribution.
Assume also that the sek§;, X, .., Xy andZ;, .. Zy are mutually independent. Let

I = arg min; X; be the index of the point with the lowest mark.

Remark 1 We only assume that the distribution is absolutely contirsuir conve-
nience here. This ensures thatX; = X;) = 0 for anyi # j. This makes our proofs
shorter and more transparent but is not essential for outesteents to hold.



Remark 2 In the notation above?, ..Zy represent the vector of points’ coordinates
and X, .. Xy represent values of the objective function at these points.

Proposition. The distribution ofZ; is the same as that ¢f; (or the same as the
distribution of any of the initial points).
Proof. Note first thatP(I = i) = 1/N for any:. This is evident as

N
> P(I=

and all probabilities are equal to each other due to the ickrdistribution ofX .
We can now calculate, for any set of points

N
P(Z; € A) = ZP =) ZIEA|I_zzzlPZeA P(Z, € A)n
i=1
This shows that minima of,, defined in[(l) are distributed uniformly ovér.

2.2 Further comments onf

Since, by constructionf is in effect a noisy signal with zero smoothness i.e., no cor-
relation between neighbouring points, it is clearly notedifor testing the quality of
fithess improvement or as a direct guide in assembling therighgn. As explained
previously, the rationale behind usirfgis solely to elucidate the underlying structural
bias of the tested algorithm. More comments on this issugigem in Sectiof 5]1.

3 Numerical results

In this section we illustrate the use @f in investigating the occurrence of structural
bias in different algorithm configurations. We apply thigustural bias probe’ to two
algorithms that are frequently deployed in optimizatioagtice and research, namely:
a genetic algorithm (GA), and particle swarm optimisatiB$0Q). In both cases, our
instantiations of the algorithms (and the subsequent éardinalyses), are in the con-
text of optimization in a continuous decision space (i.e. dptimization of vectors of
real-valued parameters). Combinatorial optimizationegainly also of interest, and
we later briefly speculate on structural bias in that scendfiowever, our focus here
on real-valued decision spaces is consistent with the vaten that real-valued opti-
mization (particularly via PSO variants) is the most rantgaeeding ground for the
publication of new algorithms. As such, real-valued optiation can be considered in
relatively more need for techniques that can help reseesarepractitioners discern
performance-related properties of new algorithm designs.

3.1 Typical genetic algorithm

As the first example of a randomised population-based dlgorused to solve the
problem of minimisation ofy : [0, 1]™ — [0, 1], we consider the most straight-forward



example - a typical steady-state genetic algorithm (GA) etsslutions are encoded
as strings of real values of lengthand are subject to the following transformations:
1. initialize and evaluate a population &f solutions within the boundaries of problem
domain

2. continue until the maximum number of fitness evaluat®nssched (300000)

2.1. selecparent, from the population via tournament selection[31] of sizehere,
n; = 2) in the following manner:

2.1.1. select at random; solutions;

2.1.2. based on their fitness values, choose the best sototlzecome a parent;

2.2. similarly, selecparent, via tournament selection of size, independently on the
choice of another parent

2.3. generate child solution agrent; +ax(parents—parenty ), & ~ Uni form(—d, 14+
d) re-sampled for each dimensioh= 0.25

2.4. with probabilityp = 1, mutate child solution via Gaussian mutation — perturb
every coordinate independently with~ N (0, mg * r), mqg = 0.01, r is the width of
search domain in this coordinate

2.5. evaluate child solution

2.6. if child solution is better or equal to current worst stibn in population then
child solution replaces it

2.7 end of loop, go to step &

All specified parameters represent standard choices in ¢k dif evolutionary
computation. If a result of an operator, in some dimensioesgutside the domain, it
is corrected in a saturation manner where it is forced to bsest domain boundary
in this dimension. The dimensionality of the problem is set t= 30 as a value high
enough to be relevant for the field but low enough to allowrclésualisation. This also
dictates the choice of the termination criterion as 300a0@4$is evaluations, following
[32]. We consider three settings for population si2é:= 5, N = 20, N = 100. To
provide enough statistical power for the resultsindependent runs are considered for
each parameter setting. Accordind td[33], in the limitsthigorithm converges to the
global minimum of any real-valued functiofi: M — R whose values are bounded
below and)M is an arbitrary domain.

3.2 Numerical results for a typical genetic algorithm

A convenient way of visualising multidimensional data isthg method of 'parallel
coordinates’[[34],[[35] which allows an insight into the spaegardless of its dimen-
sionality. Using this technique to visualise ardimensional point, a backdrop con-
sisting ofn vertical equally spaced parallel lines is drawn and a paointdimensional
space is represented as a collection of markers on eachsefithimes, each matching
a value of the corresponding coordinate. Traditionallgsthmarkers are connected to
form polylines (piecewise linear curves) which can revedirBensional patterns for
certain high dimensional propertiés [36]. Unfortunatéilyding the correct layout for
each dataset to facilitate data exploration is a problentoavin [37], especially for
high values ofn [38]. Such investigation is currently beyond the scope afioter-
ests, however it may become of interest for algorithms teathighly correlated search
strategies. Since the focus of this paper is solely the mewtmf the population of
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Figure 3: Positions of points with the best fitness valuesi@first (left column) and
the last (right column) populations of 50 runs of the consgdeGA for different pop-
ulation sizes in parallel coordinates; horizontal axisvehithe ordinal number of the
coordinate, vertical axis shows the range of this cooréirfihess value of each point
is shown in colour. A clear bias towards the centre of thecdespace is visible in the
last populations as population size increases.
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Figure 4: Evolution in time 050 populations of a typical genetic algorithm in selected
dimension forN = 5, N = 20 and N = 100. Horizontal axis shows values of
coordinate, vertical axis represents time. Colour of this dorresponds to values of
objective function

® 3 -~

points in the search domain, unconnected markers sufficengldslour allows us to
visualise the additional dimension - the value of the olijedunction at the point.
Following the technique described above, Fig. 3 shows, iallgd coordinates,
positions of points with the best fitness values in the firstt @¢olumn) and the last
(right column) populations fd30 runs of the considered genetic algorithm, for different
population sizesv = 5, N = 20, N = 100. Clearly, for all population sizes, the initial
distribution of positions in the left columns of the figuresciose enough to uniform.
However, in the right column, instead of seeing a near-umifdistribution of points,
a clear bias towards the centre of the search space becomeswident in the final
populations as population size increases. In other wordgenetic algorithm with
bigger populations tends to avoid the corners of the seasaath and concentrates
more on sampling points closer to the middle of the interfeailno obviously apparent
reason. Such behaviour is barely noticeableXor= 5, more pronounced foN =
20 and is very clear fotv = 100. These anomalies represent structural bias. Our
numerical results also suggest that this behaviour is sterdi throughout time and
does not depend on termination criterion - consecutive [adjpuns spread out less and
less from the middle of the search domain, see Elg. 4 whickvshbe evolution in
time of positions of all points 050 populations in a selected dimension for all three
population sizesWe therefore conclude that, owing to structural bias, adgbgenetic
algorithm with a large population potentially wastes thediss evaluations budget via
oversampling a region of the search domain, to the detriroéaverall performance.

3.3 Typical Particle Swarm Optimisation algorithm

Particle swarm optimisation (PSO) is another example of uladion-based optimi-
sation algorithm introduced by Kennedy and Eberhartin,[28d then developed in
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various variants for test problems and applications. Thimmetaphor employed in
particle swarm optimisation is that a group of particles esalise of their personal and
social experience in order to explore a decision space atattdeolutions with high
performance.
More specifically, to minimisg : [0, 1]3° — [0, 1], the following steps are taken:
1.1. initialise a population ofV solutions within the boundaries of the problem at
t=20
1.2. evaluate every solution in the population based on Hjeabive function
1.3. for each solution, assign its personal best posiﬂﬁ’n: Do
1.4. assign the global best position]ig)b
1.5. for each solution, initialise a speed vectay = (v, ...,v%) such thatvi ~
Uni form]0,0.1]
2. continue until the maximum number of fitness evaluat®nssched (300000)
2.1. update the speed vector for every solution in the pdjpmasv; 1 = covy +
clal(pfb —pt) + Cgag(p'gb — pt), whereay, as ~ Uni form|0, 1] are re-sampled in-
dependently for each solution angl=1,¢; =2,co =2
2.2. if||vi41 ||, > 0.2 substitute it coordinate-wise Wit‘;jfj”;,
2.3. update the position of every solution in the populatiep; 1 = p: + v:11, eval-
uate the new solution
2.4. if needed, update personal best posiw‘hfor each solution
2.5. if needed, update the global best posiﬁb@?w
2.6.t =t+ 1, end of loop, go to step2

As well as in the previous section, the algorithm and spetpga@rameters represent
standard choices in the field of evolutionary computation.allow fair comparison,
the termination criterion is kept &$0000 fitness evaluations. Finally, echoing the
experiments done with a typical genetic algorithm, here Ise ase the three settings
for population sizeV = 5, N = 20, N = 100, and we perforny0 independent runs
for each.

1=1,...,n

3.4 Numerical results for PSO

The same techniques as in Secfiad 3.2, applied to the asalf/BISO, reveal a rather
different situation as shown in Fif] 5. As expected, therithistion of initial positions
of points with the best fitness shown in the left columns ofitperes is close enough to
uniform. But, as in the case of the typical genetic algorithmstead of a near-uniform
distribution, positions of the final points show a clear babeit of a different nature. A
more complex type of dependency of the population size obitdeinduced is present
for the highest and lowest values of the considered pojpuaizes. In the case of
N = 5, positions of final points clearly group around the corners avoid regions in
the middle of the search domain. Meanwhile, /or= 100, the final points tend to be
positioned closer to one corner of the hypercube domain emid &s opposite corner.
The behaviour of PSO wittv = 20 is also not ideal in terms of the distribution of
final points, as they appear slightly further apart compaoetthe initial distribution.
These anomalies clearly demonstrate the presence ofigimubias in the considered
version of PSO. Moreover, since none of the operators thiaesap this PSO clearly
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Figure 5: Positions of points with the best fitness valuesi@first (left column) and

the last (right column) populations of 50 runs of the constdd>SO for different pop-
ulation sizes in parallel coordinates; horizontal axisvehthe ordinal number of co-
ordinate, vertical axis shows the range of this coordirféteess value of each point is
shown in colour. A more complex type of dependency of the faifmn size on the

bias induced is present for the top and bottom values of tpelption size.
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predispose its population to cluster in such manner, tfiése$eems to be emerge from
their combined dynamics.

3.5 Remarks regarding the random generator

The empirical results for the genetic algorithm in this pagre produced involving the
use of a standard Java 48-bit random generator underpinmitege required, the gen-
eration of random’ numbers within the implemented aldarit This commonly-used
pseudorandom generator is based on the linear congrugetiatator (LCG) with a pe-
riod of 248 ~ 2.8-10'*, while the seed is automatically generated via the systeimne
System.currentTimeMillis(Meanwhile, our empirical PSO results are produced using
the standard Unix functiodrand48with the same parameters as above and the seed
value is obtained visrand48 It is well-known [40] that when a series of consecu-
tive values are obtained from this type of random generatéwrim multidimensional
points, they end up lying on a finite number of hyperplanesrggcting the intended
domain. This property is usually referred to as the Marsagffiect. Clearly, unless the
precision of the random generator is close to the precissed by the algorithm, this
constitutes a problem as, even in the limit, these pointaatfil all of the domain.
The number of such planes is boundedbyn)!'/™, wheren is the dimensionality and
m is the modulus of the LCG. For the case30fdimensions, the bound on the number
of planes is36. The quality of each version of LCG can be further assesssedoan
values of increment and multiplier via estimating the diseabetween the hyperplanes.
However, such calculations are feasible reliably only éov Himensionalities [41].

Another usual concern about random generators is how ratig@moutput actu-
ally is, in the sense of correlation between successivaiitsss (as opposed to their
coverage of the domain). There are two kinds of random géarsravhich differ in
how the numbers are produced: true random generators sa@ople source of en-
tropy [42], whereas pseudorandom number generators usteariistic algorithm
to produce random looking numbers. True random generateasune some physical
phenomenon that is expected to be random and then compefagtessible biases in
the measurement process. Example sources include megpatmospheric noise, ther-
mal noise, and other external electromagnetic and quanhengmena. Being truly
non-deterministic and aperiodic, unfortunately, theseegators are also slow, costly,
inefficient and not reproducible which makes them a bad @fmicpractical sampling
applications. Itis still an open question as to whetherjitdssible in any practical way
to distinguish the output of a well designed pseudorandomeiggor from a perfectly
random source without knowledge of the generator’s infestade [42].

How should these observations concern us? Like virtualiygdlemented stochas-
tic algorithms, our random’ numbers apseudorandomintuitively, we might expect
bias in the pseudorandom generator to be swamped by the gedaction of the al-
gorithmic operations and subsequently be invisible in #wmilts — this is, indeed, the
common (implicit) approach. However, the designfgexplicitly removes one of the
several dynamic forces that we would otherwise expect taritarte to this 'washing
out’ of any effects from the pseudorandom generator. To s@mmbining this with
the perhaps-unexpected appearance of evidence for stlbtas may lead to a sus-
picion that what we have observed could be artefacts of thaqmwandom generator.
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Intuition for the opposite conclusion is well-fuelled. Frample, the Marsaglia effect
is quickly obscured by aspects of the algorithm that digt@tuninterrupted sequential
mapping that the Marsaglia effect assumes, and (espeaadlylense in operations that
will move points away from the 'Marsaglia planes’. Also, as discuss further below,
modern pseudorandom generators are quite effective atiaggperiodic correlations.
Nevertheless, in this section we place the pseudorandoergten under close scrutiny
in order to uncover evidence as to whether it may have a bgarirour findings.

To achieve this we have devised three tests, borrowing tlesign from the body
of research that has gone into designing new classes of psandom generators and
testing their properties from various angles| [43]] [44R][446], [42]. Each test within
these test suites is aimed at finding a different kind of reomdomness, but as yet
no specific finite set of tests is deemed complete to guardinééesome generator is
foolproof [42]. For the purposes of this paper, the aspedastiy of interest are true
uniformity and the absence of correlations in a long segeiefcandom values. There
is no problem with uniformity as generators employed fos thaper are among the
most popular implementations used and tested V\E:ieﬁgegarding cross-correlations
in the sequence of random values, apart from the aforenmatidarsaglia effect
investigated for low dimensionalities, little in the way thfeoretical results is avail-
able. Values of cross-correlation lag (or 'effective pdtias we refer to it here) which
need to be studied usually exceed the dimensionality of Hjectve function, since
the majority of algorithms use random values for alteringouzs parameters through-
out the run. Careful examination of the pseudocode provid&kction$ 3]1 and 3.3
shows that both the genetic algorithm and PSO start witkalisiation of their popu-
lations which requirédim + 1) N,,,, random numbers for the genetic algorithand
(dim + 14 dim) Ny, random numbers for PSO, whetén = 30 is the dimensional-
ity of the domain andV,,,, is population size set t8, 20 and100 for both algorithms.
Subsequent functioning of the algorithm is periodic in tbkofving sense: producing
every new point to be examined by the algorithm requires éineesamount of random
numbers 2dim + 5 for the genetic algorithm angldimN,,, + 1 for PSO. In other
words, if7 is an index of the element of the pseudorandom sequence vehirsed to
generate the position of the new point in dimensiptinen: +p. is the index of the next
pseudorandom element which will be used to generate théigrosif the subsequent
new point in dimension, wherep,, is the effective pericﬂj

To eliminate the possibility that structural bias obseriwedlgorithms considered
in this paper originates from the nature of the pseudoranuamber generation rather
than being inherent to the algorithm, let us suppose the sifgpathere is a correla-
tion between random numbers that are used to generate tiesvafl some coordinate
of two subsequent points examined by the algorithm. To emarany such correla-
tions between elements of the pseudorandom sequencespp@sprthree testdest
1 selects some dimension and examines the correlation betegesecutive pairs of
random values used to generate points in this dimen3wst.2replicates Test for all

2This is also supported by our tests.

3in this and the next three formulas, one extra random nunstetded to account for evaluation ff

“4For reference, the Marsaglia effect bounds for these aféegteriods are the following41 for 65
dimensions for GA withNp., = 5, 125 for 301 dimensions for GA withN,o, = 20, 455 for 1201
dimensions for GA withV,,,, = 100 and2221 for 6001 dimensions in all three PSO implementations.
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Figure 6: Schematic explanation of te$t8 examining correlations between elements
of random sequences. Squares represent consecutive 8erimmdom sequence and
loops denote considered correlations where length of thie i constant for each test
and referred to as period of this test. Such types of coroelatan potentially induce
patterns similar to those produced by structural bias.

dimensions simultaneouslyest 3tracks the correlation between consecutive values in
the pseudorandom string or, in other words, replicates Masth period1. Schemati-
cally, these tests are explained in Hiyy. 6, where squaressept consecutive elements
of the pseudorandom sequence and loops denote the conkiderelations; the length

of the loops is constant for each test and referred to as tfedpef the test.

We apply these three tests to each of two kinds of long se@senae coming from
a true random generator and another from a pseudorandomag@nesed to produce
results in Sectiof]3. Our 'true random’ sequence uses daia & reputable online
servicerandom.orgwhich generates randomness via atmospheric noise picked ap
radio. This service is subject to a battery of daily testsollttionfirm that it maintains
all of the randomness properties claimedi [42]. In additseries of sequences has
been produced via the standard Java generator discusseslfaba selection of real-
istic values of seeds. Lengths of all sequences is set toQD@@ments. Results of
testsl-3 for these two sequences are shown in Elg. 7, where the peanidddtsl and
2 is set to65, which is the effective period of our genetic algorithm iplentation for
population sizé. The period for test is 1, as explained above. Visual inspection does
not reveal any significant differences between the true @edighorandom sequences.
Results for other period values and for random sequencésdifferent seeds are of
identical natureThis suggests that our observations of structural bias donginate
from the random generator but rather represent artefacisifthe iterative application
of algorithmic operators.

In practice, the situation is slightly more complicatedhcs for some algorithms
(like the genetic algorithm considered in this paper), flodxeamined points enter the
population. This means that some of the dots shown inFrige Biaved out and others
are moved via a series of trivial parallel projections dejdeg on whether or not the
point constructed with these dots has entered the popnlaéised on its fitness values
and particulars of the algorithm. At the current stage of msgearch, simulations
involving such tracking is impractical and deemed of noipafar value.

Finally, while investigating known properties of pseudatam generators, we stum-
bled upon a good example of a highly (structurally) biaseg@thm. In what was a
serious attempt by a skilled algorithm designer to desigsupér-random” number
generator, Donald Knuth came up witigorithm K, which turned out to have unex-
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(a) Testl for pseudorandom séb) Test2 for pseudorandom sge) Test3 for pseudorandom se-
quence quence quence

(d) Test1 for true random sefe) Test2 for true random seff) Test 3 for true random se-
quence quence quence

Figure 7: Correlations between elements of pseudorandquesees of different na-
ture. Results of tests-3 for two sequences obtained from pseudorandom (first line)
and true random (second line) generators each made1(9@d0 numbers fromo, 1].
Period for testsl and?2 is set to65 which is a value of effective period of GA im-
plementation considered in this paper for population Sizgeriod for test3 is equal

to 1. Visual comparison does not reveal any significant diffeesnbetween true and
pseudorandom sequences. Results for other period valdesmagiom sequences with
different seeds are of identical nature. This suggestsstnattural bias cannot origi-
nate from random generator but rather represents artéfagtighe iterative application

of algorithmic operators.
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pecte%propertie{ﬁl?]. Given a 10-digit decimal numbeg, dlgorithm functions as
followd:

1.

o o b~ W

10.

11.

12.
13.

Choose number of iterations. Sét« ||, the most significant digit ofs

(Steps 2 to 13 are executed exadtly- 1 times, that is randomizing transforma-
tions are applied a random number of times.)

. Choose random step. S&t<« |X/10%] mod10, the second most significant

digit of X. Go to stepg(3 + Z) (i.e., jump to a random step).

. Ensure> 5 - 10°. If X < 5000000000, setX «+ X + 5000000000.

. Middle square. Replack by | X2/10°] mod10%°.

. Multiply. ReplaceX by 1001001001.X mod10°.

. Pseudo-compliment. 1K < 100000000, then setX <« X + 9814055677;

otherwise sef{ + 10 — X.

. Interchange halves( < 10°(X mod10°)+ | X/10°] i.e., interchange the low-

order five digits ofX with the high-order five digits.

. Multiply. Same step as 5.

. Decrease digits. Decrease each nonzero digit of the déodpresentation ok

by one.

99999 modify. If X < 10°, setX <« X2 + 99999; otherwise sef{ «+ X —
99999.

Normalize. (At this poinfX cannot be zero.) IX < 10, setX «+ 10X and
repeat this step.

Modified middle square. Repladeby | X (X — 1)/10°] mod10*°.

Repeat? I¥” > 0, decreas& by 1 and return to step 2. " = 0, the algorithm
terminates withX as the desired "random” valge

Initial tests of this generator revealed that, dependintherstarting value, the output
of this algorithm is far from being "super-random”: it eitheonverges to the 10-digit
value6065038420, or the sequence begins to repeat itself aftérl values, in a cyclic
period of length3178 [47]. This example strengthens the view that thoughtleasty
sembled overcomplicated algorithms have elevated charfqasssessing undesirable
and intractable properties.

5The pseudocode is given here to demonstrate how complithgedlgorithm is; there is no need to
follow it in detail.
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4  Structural analysis of a simplified genetic algorithm

In this section we are going to look at a simplified version geaetic algorithm, and
theoretically analyse this algorithm with a view to uncamgrdynamics that may cause
structural bias. Our simplifications will allow us to anaychanges in the sample vari-
ance of the positions of points in the population when we ggeea new point (and
replace one from the current population). However, the Bfivg@tions, though neces-
sary to facilitate analysis, do not materially change théquenance of the algorithm on
a function such ag,, as we explain later with both heuristic arguments and nigaler
experiments.

Consider a genetic algorithm, as in Secfiod 3.1, with thiefdhg amendments to
its operation.

1. Selection is uniformly random — i.e. there is a purely @ndhoice of parents;
2. the child replaces a randomly chosen member of the papnlat

More precisely, we define a procesk (¢) },cz, , whereX (t) € RY for eacht and
X;(0) is uniformly distributed in0, 1] for eachi = 1, .., N. The change from timeto
time¢ + 1 is as follows:

e Pick two numbers from to N at random (with replacement). Let these numbers
bej andk.

e Generate a new coordinate
Y = (min (aX; + (1 — a) Xy + Z,1)) ", 2

wherez™ = max(z, 0), «is arandom variable uniformly distributed ¢ad, 1+

d) for a positived andZ is a Normal random variable with me@rand variance
2

o~.

This represents a choice of a new point which is absorbecdidhndaries.
e Pick a number from to NV at random; let this number hie
e ReplaceX; byY.

Let S%(t) denote the sample variance of the veckqt)

oy _ L 2 (S Xi(1)”
S*(t) = 5 > Xi() ~ :
We can prove the following theorem.

Theorem 1 If
3N+9
i —1+ /5T
2 )

then there exish < K < oo ande > 0 such that if5?(¢) > K, then
E (S?*(t+1) - S*(t)|X(t)) < —e.
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We prove the theorem by bounding the sample variance of the real neptls/
the sample variance of the next step without absorptioneabttundaries. Indeed, it is
immediate to check that the sample variance of the non-bBbdmalues at the next step
is an upper bound for the sample variance of the originalgjpbsabsorbed) values,
and the difference between (hon-absorbed) sample valuegaubsequent steps is
equal to

(N~ DB (2 4+ 1) - S2(0]X(1)) =
LS (- XP+EY?) - LE (R Sypa (51— X4+ ¥)2) = S + 487,

N3 <
gkl

whereY is defined in[(),S2 = > X;(¢)? andS; = Y X;(t). The remainder of
the argument consists in re-arranging terms and notingEbat= 1/2 andEU? =

1+d+d?
e ——

3
Note that
B o2(1—1/N)
C N 12l (v )

The theorem implies that if the sample variance of the polatstions is larger
than K, then on average it will decrease. This, heuristically, msehat the points
will tend not to spread over the entire interval 1]. We conjecture that there is a
stronger result showing that points’ locations convergestiict subset df), 1]. This is
supported by our numerical results but so far we have not dstrated it theoretically.

For vectors withV components all taking values 0, 1], it is clear that the largest
value of the sample variance ﬁjévfl) and is always bounded away frain(in fact,

convergestd /2 asN — oc). One can easily see, however, tat— 0 asN — oc.
This means that for a sufficiently large number of points egbpulation, the range of
configurations in which the average change in variance iatieg(i.e. configurations
from which the points tend to become spread less at the megtitistance than at the
previous one) is not empty and becomes larger as the numbpeirat increases.
Finally, before closing this section with a brief empiritadt of the simplified algo-
rithm that we have analysed, we note certain observati@$ahow from the theorem,
and that we will refer to subsequently. First, numericallesgtion of the expression
of Theorem 1 with typical and reasonable values suggestghbamplied 'reducing
variance’ dynamics may be commonplace in genetic algoridlesigns. Further, and
interestingly, asV (population size) increases, the 'burden’®to be small increas-
ingly relaxes, which suggests that structural bias willdmee more prominent at larger
population sizes, despite perhaps high levels of explmmaiargerd) among the al-
gorithm’s operators. We note that this expectation, foreqmominence in structural
bias at higher population sizes, resonates strongly withempirical findings in Sec-
tion[3.1. Next, considering that 'difficult’ landscapes ntayd to keep a population
scattered across multiple local optima (at least in earlypnmdle stages of a genetic
algorithm’s search), the theorem indirectly suggeststtimtonsequent high position
variance in such circumstances will exacerbate struchiaal In other words, the the-
orem provides a theoretical root suggesting that many kaiddifficult’ landscapes
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(where we might expect high positional variance duringa®awill be sensitive to an
algorithm’s structural bias, while 'easy’ landscapes (fiich a good algorithm can be
expected to focus quickly around optimal areas, with consatjow variance) will be
relatively insensitive to an algorithm’s structural bisis.Sectior b, after first present-
ing approaches to visualise and quantify structural bigsperform experiments that
allow us to start to evaluate these suggestions.

Numerically, the behaviour of, of the simplified genetic algorithm is very similar
to the behaviour of the typical genetic algorithm preseiie8ectior 3.1 as Figuid 8
shows. One can expect this due to simple heuristic arguméntieed, given that
fithess at every step is chosen from a uniform distributiodependently of the fitness
of all other points, and a point will only be accepted if itséiss is better than that
of at least one existing point, the fitnesses of all point$ @hverge to the optimal
one. Therefore removing a random point instead of the warstshould not strongly
influence the performance of the algorithm. The same cosdbmchoice of parents.
Thus, this analysis approximately describes the typicaéte algorithm.

5 Quantifying structural bias and observing its conse-
guences

Returning briefly to analogies, let us consider a footbahteunning trials for a new
goal-keeper. Imagine that the final choice is to be made letweo persons: one
talented but rather lazy keeper who prefers to stand stilideethe left goalpost, no
matter what the actions of the striker, and one very enerdgetper who can reach
every part of the goal but occasionally fails. In this angloge intend the goal to
represent the problem domain, the goal-keeper plays teeofdhe algorithm and the
strategy of the striker, unknown to the goal-keeper, raprissthe objective function.
Itis then the duty of the goal-keeper to locate as close asilplesa position where the
ball is going to approach the goal, just as the algorithm s¢eddentify the region of
the goal which contains an optimum of the current objectivecfion. In life, it can
happen that, by pure luck, the striker is equally limited aad hit only the region of
the left goalpost. Clearly, our lazy goalkeeper will havepnoblem defending the goal
from such a striker. However, as it usually happens thdtessitend to target different
regions of the goal, a more flexible goalkeeper will end updei better choice for the
team regardless of his or her occasional shortcomings.

We propose, first of all, a simple visual test for structurashthat amounts to
visualising the performance of the goal-keeper in suctah @ur visual test is meant to
identify whether or not an algorithm has any structural bimgo compare the degrees
of such bias among a suite of algorithms. In this test, caichs can be made based
on the distribution of coordinates of points with the begid#s values in the final
populations of the algorithms under consideration runwing, for roughly the same
fithess evaluation budget as intended for their deploymemnéal objective functions.

Application of this visual test to the algorithms exploredSectio B amounts
to observing the parallel coordinates figures presentdigdhereby inspecting the
distributions of the positions of thg0 best points (the best point from each &f
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Figure 8: Positions of points with the best fitness valuesi@first (left column) and
the last (right column) populations of 50 runs of timplified genetic algorithrfor
different population sizes in parallel coordinates; honial axis shows the number of
coordinate, vertical axis shows the range of these coamitize fitness value of each
point is shown in colour. A clear bias towards the centre efdbarch space is visible
in the last populations as population size increases.
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independently for each dimension of the problem; phealue returned by each test

is shown with a marker. Thg-values in the first, third and sixth columns are signifi-
cantly lower than others, which translates into strongeicstiral bias present in results
for these algorithmsp-values shown in the second column correspond to the case of
milder structural bias, meanwhile the fourth and fifth cohswcharacterise algorithms
with the weakest structural bias observed in our series pééments. These results
support our conclusions regarding strength of structuias based on purely visual
analysis of Figd.13 arld 5.

independent trials), for each of the algorithm configuraioSuch inspection suggests
that an appreciable level of structural bias is exhibitedH®ygenetic algorithm with
population size 00 (Fig.[3(f)) , and by PSO with population sizes of bdth= 5 and
N =100 (Figs.[5(®)[5()). Meanwhile, the genetic algorithm with = 20 exhibits
milder structural bias, see Fig. 3(d). The remaining twaesasthe genetic algorithm
with N = 5 and PSO withV = 20 — seem to provide satisfactory performance in
terms of structural bias, but are clearly more difficult thietientiate objectively based
on a purely visual test of Figk. 3{b) ajnd §(d).

For an objective test of the level of structural bias, we ps#use of the Kolmogorov-
Smirnov test([48],[[49],[50], specifically to compare theggrital distribution function
of the sample of coordinates and the cumulative distriloutimction of the uniform
distribution. By using the Kolmogorov-Smirnov test in thigy, we obtain g-value
that expresses the probability that the sample comes fronifarm distribution given
the null-hypothesis is correct. Fi§ll 9 summarises the tesldlthis test, performed
independently for each dimension, for the same sets of pdistussed earlier in the
context of visual tests. These results numerically suppartaforementioned conclu-
sions based on visual analysis of Figs. 3[@nd 5. For exanhgle)uster of low-values
plotted against "PSOp5f0” corresponds to the observatfdrigh levels of structural
bias for PSO withV = 5.
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Our proposed approach to quantifying an algorithm’s inhestructural bias there-
fore comprises running repeated trials of the algorithim(gquestion using as the ob-
jective function, and subsequently applying one or bothpafallel-coordinates based
visual inspection of the final points, and the Kolmogorovi®iov test to assess the
uniformity of the distribution of those points. The propdseethod is computation-
ally highly efficient in comparison to approaches (such a4 df [30]) that require
numerous optimization trials with the actual objectivedtion (and also needing to
be re-applied for every new objective function of intere€ur proposed approach is
potentially suitable as an algorithmic design tool for gahese. It is important to
note that, on its own, a strategy of maintaining a more everreme of the search
space by the algorithm does not ensure a satisfactory Higuo design capable of
fast convergence to a near-optimum solution. The sole tiagecf such a strategy is
to identify a combination of operators that forces the atfar to explore the domain
with more equal probability. This strategy is therefore ptementary and should be
used in conjunction with more comprehensive design stiedeghich ensure other
favourable properties of optimisation algorithms suchhas¢ discussed in Sectibh 1
or other properties specific to a particular class of alharg.

5.1 Further numerical results: consequences of structurabias on
a suite of test functions

To investigate the consequences of structural bias wheraiometo optimize a stan-
dard test function, in this subsection we perform experisiesing the CEC 2005 test
function suite, which is widely used to test and comparerdlgms in the field of evo-
lutionary computation[32]. Exact specifications of the CE@5 functions can be
found in [32]. The benchmark suite comes along with sourckedbat allows users
to treat the individual functions in the test suite as 'bladk’ functions that simply
return a fitness value when given ardimensional coordinate. No other information
is provided to the optimization algorithm, except for sfieations of the range of the
search domain. The benchmark suite makes its functionkblafor specific dimen-
sionalities (e.g10, 30 and50).

For the purpose of illustration, we select a limited numbfefuactions from the
CEC 2005 benchmark suite for which the genetic algorithnsimered in this paper:

e fs shifted rotated Ackley function ifi—32, 32]3° with global optimum on the
bounds

e fy shifted Rastrigin function if—5, 5],

e f13 shifted expanded Griewank and Rosenbrock functiga-i 5]3°,
e f14 shifted rotated expanded Scaffer F6 functiof-in 00, 100]3°,

e fy; rotated hybrid composition function jr-5, 5]3°,

e fy, rotated hybrid composition function jr-5, 5]3°.
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Parallel coordinates visualisations of our genetic atparis results on these func-
tions are shown in Figd._10, N[1.]12. Each individual plot swarises the results of
50 independent trials of the genetic algorithm on the flarctoncerned, by showing,
in parallel coordinates fashion, 50 30-dimensional peintsnprising the best point
reached in each trial. It is important to stress that intsigdion of these figures should
beentirely differenfrom interpretation of those shown in Fig$. 3 &hd 5. Unlessip
ically constructed so, it is not expected that the final distion of positions of the best
points in the final generation is close to uniform in the cas&ny function other than
fo. In sharp contrast to thf results, we would naturally expect in these plots to see a
strong effect due to the combined activity of selection drelghape of the landscape,
resulting in the identification of regions at or close to oyiof the objective function.

At any point in time during the optimisation process, twocfs can be concep-
tualized which simultaneously act on the population - l@age bias and structural
bias. The first force pulls the population towards betteu&alof the objective func-
tion, meanwhile the second force can be thought of as pultiegpopulation towards
"attractors’ in the domain (perhaps complex attractorspsehnature arises from the
combination of algorithm design choices. Both of thesedsiare unknown and, there-
fore, their sum — which defines population movement — is atdmawn. The use of,
to help quantify structural bias is precisely based on tlea iof eliminating one of the
unknowns, the 'landscape force’, hence revealing any strakbias. It follows that,
to interpret the visualisations of Figs.]110] I1] 12, we caoceed as follows. For a
given objective function, we can observe how the distrinubf final points varies as
a function of the algorithm configurations considered, amusader how this correlates
with the relative degrees of structural bias previouslyeobsd (via experiments with
fo) over the same set of configurations. Obviously, attentimukl also be paid to the
final attained values of the objective function and theifasaces.

In such analysis of results over the CEC 2005 benchmark, suédnave observed
three types of behaviour, which we conceptualise as reguitom the combination of
structural bias in the algorithm configuration itself cormdad with more or less sensi-
tivity to that bias inherent in the objective function at Han

e Sensitivityto structural bias, as exemplified fy and fo, see Fig['ID. Fofs, all
three series of runs attained similar values of final fithe®s 80 runs, but runs
with larger populations failed to find good solutions clogethe boundary of the
domain. We attribute such failures to structural bias ofgéeetic algorithm, as
also observed falv = 50 on f,. On fs, the genetic algorithm exhibits behaviour
overall similar to the case gf,. Meanwhile, forfy, final fitness values are quite
different across the three series of runs, but the variahpesitions of final best
points demonstrates the pattern of sensitivity to strattoias.

e Insensitivityto structural bias, as exemplified y; and f»;, see Fig.[ 1. All
parameter settings considered lead to similar resultgsingef the fitness values
attained, positions of final best points and variances iim gasitions.

¢ High sensitivityto structural bias, as exemplified by, and f»4, see Fig.[IP.
In the case off14, quite similar values of final fitness are attained over thegh
series of runs; however, drastic changes are clear from enesgo another in

25



terms of variances of positions of final best points. Rbe= 5, these points fill
the whole domain and better points, indicated on the figutle ked markers, are
uniformly spread out across the domain. The situation i®inesextent similar
for N = 20 but all points start to shift towards the middle of the intdrand
those with better fithess values in particular. Bor= 100, no final best points
are located in the outer regions of the domain, but theiridigion in the centre
of the domain is rather uniform. As fof.4, there are drastic changes both in
terms of final fithess values and distribution of positiongimédl best points. It
is interesting to note that for the genetic algorithm with= 100 on fo4, it is
rather easy to find a region with low fitness values consistaver the series
of 50 runs suggesting that this particular function possesspe@ai property of
some kind.

As regards other functions from the CEC2005 suite, it is wanentioning that
functions in the top of the list tend to be less sensitive ® structural bias of our
genetic algorithm. These functions are known to be unimodallose to unimodal
[32]. This observation aligns well with our speculation iecBon[4, and suggests that
the theoretical analysis of the simplified genetic algonittnay have captured at least
part of the essence of the factors that underpin structimaldnd also the sensitivity
to structural bias of any given objective function (via infeed expectations of how the
landscape may affect population variance). However, wefceurse very much only
at the beginning of a theoretical understanding of strattbias, in terms of both un-
derpinning causes and of the effects of particular land=xaphis state of affairs goes
hand in hand with a need for approaches to investigate anttifumherent structural
bias, such as proposed in this paper. Returning to thevelsdinsitivity to structural
bias of different objective functions, we speculate thatHer work, involving anal-
yses of particular collections of objective functions, htigeveal similarities in the
structure of basins of attraction in the landscapes mighetaie with similarities in
sensitivity. Empirically, we have seen that evolving p@igns seems to be less "con-
fused” by structural bias in stronger regions of attractidrich characterise unimodal
optimisation as opposed to a weaker pull from multiple adl@sgions of attraction in
the multimodal situation. This also points towards siniies between the effects of
structural bias and noise in the objective function. Jusi asisy objective function
induces false optima in the landscape, structural biasptieedy pushes the evolv-
ing population towards regions potentially unremarkablerms of objective function
values.

6 Discussion and Conclusions

A vast body of research in the field of population-based ojgtition algorithms deals
with efficient exploitation of information already contauhwithin the population, while
little attention is paid to investigation of whether or nogfzecific combination of al-
gorithmic operators and algorithm strategies is actualjyable of reaching all parts of
the search space with equal efficiency. When an algorithmoisapable in the latter
sense - that is, when an algorithm favours certain areagafaharch space over others,
independently of the fithess function, it is exhibiting tattural bias’.
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Figure 10: Positions of points with the best fitness in thé papulation of 50 runs
of the considered GA for different population sizes in pletatoordinates -fs and

fo are sensitive to structural bias of GMorizontal axis shows the ordinal number of
coordinate, vertical axis shows the full range of domairhia toordinate kept constant
for each function; fitness value of each point is shown in@gnlo
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In this paper we have argued, from both theoretical and ecapstandpoints, that
structural bias is likely to be common in practice, and afiggliwhen we would least
expect it (when we increase the population size in hope of 1@ rexploratory search)
and when it may cause most damage (on 'difficult’ problemshewfaced with the
problem of optimising a given function, the amount of infation usually available
regarding its properties and landscape features is highiyeld. Typically, for exam-
ple, one has no prior information at all concerning wher@@agearch space the optima
may be. Therefore, one wishes to design an algorithm capdihdeating the optima
no matter where exactly they are in the search space. Thigesnhat the variation
operators of the algorithm must be able to, first of all, readry region of the search
space and, second, ideally, do so with no bias towards artigylar region.

It is helpful to think of this issue in terms of intuitive 'foes’ that act on the pop-
ulation. Population-based optimisation algorithms cabekegarded as sophisticated
variants of 'generate-and-test’ algorithms; the 'teseffected by the fitness function,
and provides information that the algorithm uses to guidenévigation of the land-
scape; meanwhile, 'generate’ refers to the production of cendidate solutions, and
is achieved by the algorithm’s suite of operators. In venrydorterms, we conceptu-
alised population dynamics as the product of a 'landscagefoirce’ and a 'structural
bias force’, respectively representing the influences effifmess function itself, and
the algorithm’s design. To empirically investigate sturet bias in this paper, we effec-
tively neutralised the 'landscape force’ by performingiopgation experiments with
fo (as defined in Sectiddl 2). This enabled us, by visualisingdisalts of multiple
experiments, to observe the ’structural bias’ force inachy observing its effects on
the distribution of the final best points. Since we would estgkese distributions to
be uniform in the absence of structural bias, the patterrbséosed non-uniformity,
in combination with other considerations, can be taken fagrimative of the structural
bias inherent in the optimisation algorithm.

To some extent, one can posit an alternative explanatiosuoh effects by ap-
peal to undesirable properties of the pseudo-random nugeerator used. Such an
objection can be difficult to discount, since the effectshaf tomplex ways in which
pseudo-random number generators are indeed non-randoextaeenely difficult to
predict. Nevertheless, our analysis in Sedfioh 3.5, calypléh our theoretical findings
and the pattern of empirical results, suggest that thisagmtbr reveals structural bias
rather than pseudo-random artefacts.

Our approach to revealing and quantifying structural sasasily replicated, and
we recommend its use to investigate the structural biasntiagt be inherent in any
instantiated optimization algorithm, prior to finalisirtgetparameteric and design con-
figuration of that algorithm to be deployed on real-worldhgeans. Such investigation
of structural bias can be seen as an additional 'validats@p, coupled with other
investigations of the algorithm design which would normpdle done to reveal the
configuration that provides the best and/or fastest salstio the class of problems of
interest. Itis interesting to speculate on the consequsarfcich validation in different
circumstances. If the 'best’ algorithm configuration alss iminimal or no structural
bias, then all is well. However this may very often not be thsec When optimisation
is used for system identification problems (for exampleedeining the parameters
of a function or model that best fit a set of empirically obtalrpoints), it is usually
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deemed important to find, as far as possible, 'all’ good smhgt or a fair representa-
tion thereof. If the otherwise preferred configuration éxsistructural bias, the 'true’
system parameters may not be uniformly accessible to tlogigdg.

We have also contributed a theoretical argument that plgiréigplains how struc-
tural bias can arise in a simple population-based algorithine analysed algorithm is
simplified, but exhibits the primary strategies common taast all population based
optimization algorithms, including a parametéthat controls the degree of explo-
ration induced by the variation operator — the largehe higher the chance and extent
to which a new sample will extend beyond the region of seapate occupied by
its parents. The crucial step in the argument is to show tragverage, and under
certain conditions, the population variance will decreagth time, despite the clear
opportunities for search to extend beyond the currentioeabf the population.

If we consider a truly random algorithi A in such circumstances, in which each
new sample is generated uniformly at random in the searatesprad replaces a ran-
domly chosen previous sample, we can expect unbiased gw/efdhe search space
and maintenance of a constant variance over time, whichefuhe conditions of the
theorem) would bq%. For typical choices of parameterg’(= 0.1, N = 50,d = 0.2),
the value ofK in the theorem is much lower thqig, suggesting that such an algorithm
will rarely be able to maintain the levels of explorationu@gd to eliminate structural
bias without careful design. Algorithi®A exhibits 'pure’ exploration, however any ef-
fective optimization algorithm incorporates exploitatjavhich is invariably achieved
by biassing samples towards the regions of previouslyedsioints. The 'reducing
variance’ theorem suggests that such exploitation is gty related to the emergence
of structural bias, but it also suggests that the latter @aodmtrolled by reducing the
population size, or by raising(or, alternatively, by revisiting the algorithm’s design t
introduce mechanisms that introduce additional new sasripla way that is not tied
to the locations of previous samples). By raisihigve (usually) increase the likelihood
of structural bias but reduce the efficiency of exploitatimeanwhile, by reducing the
population size we reduce the likelihood of structural lfi@gall: in the context of a
genetic algorithm not too distant from the theoreticallpalgsed version) but reduce
the level of exploration.

The inverse relationship between structural bias and @oipul size (strictly in the
context of standard and simple genetic algorithms, which tlva substrate of our the-
oretical analysis) that is at first counter-intuitive - tari@ase the population size would
seem to inject more diversity, which we should expect tovidke such bias. How-
ever, we believe this phenomenon can be explained by ant eff@cto 'preferential
attachment’ in the evolution of complex systems. Strudthias, manifested as the
concentration of search progress in ever narrower reghkls on initial seed areas
which begin to attract further points. In our context, if tywarent solutions happen
to be close together, their offspring will stay nearby anctéase the density in this
region, and the positive feedback dynamics of this procaébsemacerbate the non-
uniform distribution. When the population size is incrahdbere is more opportunity
for such initial seeds to be present.

The results we have presented seem less surprising whatiMégpopulation-based
algorithms are considered in relation iterated Function Systemshich, by defi-
nition, are finite sets of mappings of complete metric spacesymbolically, F =
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(X, f1, fo, ey Frr)y fon - X — X;m = 1,2,..., M. Depending on the properties of
functions that make them up, IFSs exhibit a variety of betiard. According to the
collage theorem [81], for any given set/image there exisssriatly contractive IFS
whose attractor arbitrarily closely approximate thisisgfe. A linear IFS ofR™ has

a unique attractor located at the oridin[52]. Any projeeti#S has at most one attrac-
tor [53] but behaviour of such attractors appears to be monepticated than in the
case of affine IFSs as they might not depend continuously campeters[[53]. More-
over, there are examples of non-contractive projectivedfSan attractor[53]. These
results point to a potentially fruitful direction for the agsis of algorithms through
studying the properties of their operators.

Finally, it is instructive to speculate on the existencetoicural bias in combina-
torial optimization. Both the theoretical and practicaléstigations in this article are
pinned to the context of real-valued vector optimizatianthle empirical tests, we have
observed structural bias in terms of the distribution ofp®in a continuous space, and
in theory we have related its emergence to dynamics of positivariance in this space
as a result of the operation of typical real-valued opegat8o, at first sight, it is not
at all obvious that structural bias may occur in the comlunat case. However, it
is trivial to see that icould occur. For example, were we so inclined, we could pur-
posely design operators to favour certain regions of theespalependently of fitness.
Imagine, say, a permutation space with an even number o€ishja which the only
operator in use was to swap an item with its neighbour twossteyay; this search is
then confined to the cross-product of two subspaces, ognittiost of the permutation
space. Also, despite the real-value’ focus of the theoat¢tirgument, it is intuitively
reasonable to speculate that a similar argument, couchtednrs of suitable metrics,
may be meaningful for combinatorial spaces. For exampkeptrturbation effect of
a combinatorial operator on one or more points can be cteiset as a distribution
of edit distances from those points. Structural bias in doatorial search algorithms
might arise from the dynamics of the variance of this disitiim in the context of other
aspects of the algorithm’s configuration.
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