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Abstract

Challenging optimisation problems are abundant in all areas of science and
industry. Since the 1950s, scientists have responded to this by developing ever-
diversifying families of ’black box’ optimisation algorithms. The latter are de-
signed to be able to address any optimisation problem, requiring only that the
quality of any candidate solution can be calculated via a ’fitness function’ specific
to the problem. For such algorithms to be successful, at least three properties are
required: (i) an effective informed sampling strategy, that guides the generation
of new candidates on the basis of the fitnesses and locations of previously visited
candidates; (ii) mechanisms to ensure efficiency, so that (for example) the same
candidates are not repeatedly visited; (iii) the absence ofstructural bias, which, if
present, would predispose the algorithm towards limiting its search to specific re-
gions of the solution space. The first two of these propertieshave been extensively
investigated, however the third is little understood and rarely explored. In this
article we provide theoretical and empirical analyses thatcontribute to the under-
standing of structural bias. In particular, we state and prove a theorem concerning
the dynamics of population variance in the case of real-valued search spaces and
a ’flat’ fitness landscape. This reveals how structural bias can arise and manifest
as non-uniform clustering of the population over time. Critically, theory predicts
that structural bias is exacerbated with (independently) increasing population size,
and increasing problem difficulty. These predictions, supported by our empiri-
cal analyses, reveal two previously unrecognised aspects of structural bias that
would seem vital for algorithm designers and practitioners. Respectively, (i) in-
creasing the population size, though ostensibly promotingdiversity, will magnify
any inherent structural bias, and (ii) the effects of structural bias are more apparent
when faced with (many classes of) ’difficult’ problems. Our theoretical result also
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contributes to the ’exploitation/exploration’ conundrumin optimization algorithm
design, by suggesting that two commonly used approaches to enhancing explo-
ration – increasing the population size, and increasing thedisruptiveness of search
operators – have quite distinct implications in terms of structural bias.

1 Introduction

Successful implementation of any randomised population-based optimisation algo-
rithm depends on the efficiency of both its sampling component and exploitation of pre-
viously sampled information. Among other fields, Evolutionary Computation (EC) [1]
provides various examples of randomised population-basedsearch strategies. Greatly
simplified, any evolutionary computation algorithm is a guided re-sampling strategy
where movement of points is directed by its operators assisted by selection criteria
based on currently attained values of the objective function. A vast body of research in
the field of Evolutionary Computation deals with efficient exploitation of information
already contained within the population [2] while little attention has been paid to inves-
tigation of whether or not a specific combination of algorithmic operators is actually
capable of reaching all parts of the search space efficiently. This paper attempts to draw
attention to this issue and starts to investigate the latterquestion.

Inspection of recent literature [3], [4], [5], [6] confirms the presence of a tendency
to (over-)complicate both the design of individual algorithmic operators and the logic of
their assembly, counter to the rationale of the well-known Occam’s razor1, sometimes
to such a degree that the end result turns out to be intractable. Researchers seem regu-
larly to be swayed by an attraction towards ”multiplying entities beyond necessity”. We
suggest that a materially greater contribution to the understanding of population-based
algorithms and their design can be obtained via ’going back to basics’. More specifi-
cally, the great majority of optimisation algorithms fall within a class of generate-and-
test methods, iteratively alternating between these two components until a termination
criterion is met. Ideally, the generating/sampling component of such methods should
have the following characteristics [8]:

1. future samples should be biassed by information obtainedfrom previously vis-
ited points, i.e., the algorithm should beinformed,

2. future samples should be previously unvisited samples i.e., the algorithm should
benon-redundant,

3. every solution in the search space should be equally accessible i.e., the algorithm
should becomplete.

It is worth noting our use of the phraseequally accessiblewithin the ’completeness’
characteristic. Often, for example, algorithm designers may be subconsciously swayed
by the fact that the randomness of the initialisation process means that every part of the
search space isreachable, and hence feel no further need to consider this characteristic.

1Originally attributed to William of Occam, reformulated byBetrand Russell as ”Whenever possible,
substitute constructions out of known entities for inferences to unknown entities.” [7]
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Reachability and completeness (the way we define it here) arehowever very different.
For example, if a stochastic hill-climbing algorithm includes a uniform random ini-
tialisation inRn, then all points are reachable, however if the perturbationoperator is
designed to add only integer-valued vectors, then there areextreme variations in the
accessibilities of different points in the space.

Clearly, evolutionary computation methods build richly upon their ’generate-and-
test’ backbone architecture. However the above guidelinesremain valid, and, in prac-
tice, they translate well into rules for algorithm design. The first two properties –
informedness and non-redundancy in the sampling process – have been extensively re-
searched, each from a variety of viewpoints. To some extent,however, contributions
related to these two properties have appeared in diverse andunconnected literature,
using varying terminology, and there remains a need to creatively assimilate their find-
ings.

For example, with sufficient imagination one can see that theinformednessprop-
erty is closely linked to the concepts of exploration, exploitation, and their balance,
which is considered to be primary in the behaviour of evolutionary algorithms (EAs),
as examples of stochastic ”generate-and-test” methods [9]. Exploration and exploita-
tion are fundamental for evolutionary optimisation [1] butsurprisingly, several decades
after the first examples of EAs have been proposed, they stilllacked even a proper def-
inition. Over the following years, a lot of research has beencarried out in this direction
- the latest survey of results can be found in [2]. The currentconsensus definitions
considerexplorationas the process of visiting entirely new regions of a search space
whilst exploitationas the process of visiting those regions of a search space within the
neighbourhood of previously visited points [2].

The second characteristic,non-redundancy, has been investigated under the guise
of ’non-revisiting’ algorithms. Inspired by ideas from Tabu search [10], [11], basic
evolutionary algorithms have been extended to ensure the non-revisiting property [12],
[13], [14]. Another direction of research into the non-redundancy property is the study
of diversity management in evolving populations. Diversity in populations can refer
to differences in solutions in either the values of coordinates (’genotypic’ diversity) or
the objective function (’phenotypic’ diversity). To date,no single measure exists which
can suitably characterise diversity in the face of all kindsof problems and search logics
[15]. The situation is further complicated by the fact that adiverse population offers
benefits at some stages of evolutionary process (helps avoidpremature convergence to
local optima) and creates obstacles in others (impedes exploitation) [16]. The most
popular diversity-preserving mechanisms include [17] niching, crowding, restricted
mating, sharing, multiploidy, elitism, injection, alternative replacement strategies [18]
and fitness uniform selection [19].

Much promising research is also carried out that tries to explore the connections
betweeninformednessandnon-redundancy, stemming from the fact that exploration
of the search space is only possible if populations are diverse enough [2]. However,
different amounts of exploration and exploitation are needed for different optimisation
problems. Currently there are no accepted techniques for direct measurement of this
balance; it can only be noisily sensed via a proxy (such as ’level of diversity’). Feed-
back from online monitoring of such a proxy, if it is suitablycomputationally efficient,
can then be used to dynamically tilt the exploration-exploitation balance [2], [20], [21].
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Meanwhile, in recent decades, the third important propertyof the generating com-
ponent, which we can callcompleteness, has been treated as an obscure topic and
largely ignored by modern research efforts - the latest reference to this issue, [22],
briefly deals with the accessibility of a solution through evolution as a necessary con-
dition for reaching the optimum by a genetic algorithm in thediscrete case. To the
best of our knowledge, no research related to this property in the real-valued case has
been published until a rather recent revival of interest to aclosely related topic. A pop-
ular belief [23], [24] – that many population-based algorithms tend to perform better
when the true optimum is located at or near the centre of the initialisation region –
has recently sparked the interest of a small group of researchers who have explored
this phenomenon in the context of specific variants of PSO. When the initialisation
region is centred around the origin, this phenomenon is referred to as ’origin-seeking
bias’. To date, there is little or no evidence to support the presence of such a bias
in the general case. Having investigated the effects of modifying the search domains
of three benchmark problems on results produced by an unusual variant of PSO, the
authors of [25] concluded the presence of origin-seeking bias in their specific algo-
rithm/problem scenarios, and suggested that their resultscould be generalised towards
all population-based methods. However these results were later disputed and have been
largely dismissed [26]. As regards theoretical analysis ofthe movement of particles in
a PSO swarm, a study of particle trajectories [27] reveals that under certain conditions
every particle converges to a stable point defined by its personal and global best posi-
tions, with weights determined by the acceleration coefficients. Experimental results
also suggest that, for the well-knownsphereobjective function, the movement of par-
ticles is influenced by the direction of the coordinate axis which potentially makes the
algorithm sensitive to rotation of the objective function [28]. Further theoretical analy-
sis [29] indicates that there is an angular bias in the core PSO algorithm which consists
of two parts. The first part, skew, pushes particles towards bearings parallel with the
diagonals, meanwhile the second part, spread, indicates that diagonal directions are
highly unstable. The combination of the two parts creates a PSO bias that favours par-
ticle bearings that are aligned with the coordinate axes. The latest publication on this
topic [30] extends the work from [25] and proposes a metric for centre-seeking and
initialisation biases based on multiple re-runs of the algorithm in modified domains.

The majority of authors implicitly suppose their algorithms fare well in the abil-
ity to potentially cover the whole search domain. Put another way, researchers tend
to take for granted the property of ’completeness’. Such quiet confidence about this
property probably stems from the perception that, given thestochastic nature of stan-
dard initialisation methods and standard operators, all parts of the search space are
reachable. However, this ignores the prospect that reachability may actually be highly
non-uniform across the search space. Results presented in this paper demonstrate that
even the most commonly used algorithms exhibit inherent preferences towards certain
parts of the search domain. We refer to this preference as thestructural biasof the
algorithm.

To help illustrate the concept of structural bias, it may be helpful to imagine a pin-
ball machine where a player has to operate a system of mechanical devices to allow a
ball to stay on the game surface as long as possible before hitting the drain, see Fig 1.
We can consider the whole system – the pinball machine and theactions of the player
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Figure 1: A typical pinball machine

– to represent an algorithm, while the ball represents a solution travelling around the
search space. We can conceptualise multiple games on such a machine, overlapped
in time, to represent the case of an algorithm that maintainsa population of solutions.
In the ideal case, the population should be able to access theentire game surface. A
population-based algorithm exhibiting structural bias isthen replicated by an overlap-
ping in time of such machines which are unfairly tilted at some angle. Clearly, even in
this case the actions of the player have a certain effect on the movement of the balls.
However, due to gravity, the ball ends up constantly rollingto the lower side of the
machine i.e., exhibiting a certain preference and limitingthe overall coverage of the
game surface.

The remainder of the paper is arranged as follows. In Section2 we argue that
studying the structural bias that may be inherent in an algorithm can be facilitated by
decoupling the effects of the search landscape from the algorithmic operations. This
section then introduces and analyses a test functionf0, which allows such decoupling.
Section 3 takes the functionf0 and uses it as a ’structural bias probe’, presenting sev-
eral experiments in which we investigate whether structural bias seems to be present
in typical designs of a genetic algorithm and a particle swarm optimisation algorithm.
Visualisations of the results of our experiments in this section offer evidence that struc-
tural bias is indeed present in these algorithms, and sensitive to parameters such as
population size. This section ends with remarks concerningpseudorandom number
generators, in particular those used in our implementation, and offers evidence – fol-
lowing further empirical investigation – that supports theview that our observations in
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the previous section were uncontaminated by artefacts of the pseudorandom generator.
In Section 4 we turn to a theoretical investigation, which considers a simplified genetic
algorithm process (nevertheless capturing well the behaviour of a typical genetic algo-
rithm onf0). The theorem proved in this section shows that the considered (simplified
but otherwise standard) algorithm design will, under certain but unexceptional condi-
tions, induce a continual reduction in sample variance overtime; this means that the
population will increasingly cluster around certain areasof the domain while avoiding
others. Reasoning based on the theorem leads to expectations of the relationship be-
tween a genetic algorithm’s population size and the occurrence of structural bias, which
match our empirical findings from Section 3; further reasoning predicts a relationship
between structural bias and problem difficulty, which is tested in the experiments of the
next section. Section 5 begins by outlining and demonstrating approaches to visually
investigate, and then to quantify, the levels of structuralbias inherent in the design of
an optimization algorithm. This is followed by an examination of how structural bias
seems to manifest differently when we apply our standard genetic algorithm to variety
of functions from a well-known test suite. The findings from these experiments again
match with theory-grounded expectations arising from our arguments in Section 4. Fi-
nally, Section 6 provides a summary of the paper, and brief discussions of its wider
relevance, such as the manifestation of structural bias in combinatorial spaces.

2 Structural bias

When faced with the task of optimising a given function, the amount of information
usually available regarding its features is highly limited. Therefore, one wishes to de-
sign an algorithm capable of locating the optima no matter where exactly they are in
the search space. This implies that the generating operators of the algorithm must be
able to, first, reach every region of the search space and second, ideally, do so with-
out imposing any preferences for some regions of the domain over others. Clearly,
different functions and domains give rise to different situations, greatly complicating
the prospects for a general theoretical analysis. In addition, such an analysis cannot
be tackled directly due to the apparent coupling between thelandscape of the ob-
jective function and artefacts from the iterative application of algorithmic operators
i.e., structural bias. It is therefore highly desirable to be able to separate these effects.
A closer inspection reveals that, in almost all cases, the action of a selection operator
actually can be characterised as the imposition of a stochastic rank-ordering over a spe-
cific set of values of the objective function in the current population. If we replaced the
objective function with uniform random noise, over a seriesof statistically significant
number of independent runs, this would enable us to separate’landscape effects’ from
’algorithm design effects’, eliminating the influence of the (”geographical”) position
of selected points, but retaining algorithmic artefacts.

Therefore, one way to overcome this coupling issue is to use ”the most random”
test function, such that its value at any point does depends neither on the values within
its neighbourhood nor on the past (independent) evaluations at this point i.e., be inde-
pendent and identically distributed (i.i.d.). For the sakeof simplicity, and without loss
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(a) beginning (b) halfway through (c) end

Figure 2: Sketch of a typical progress of an evolutionary algorithm on a minimisa-
tion problem in terms of population distribution with projections of points’ coordinate,
adapted from [1]. Red points mark best points in the population.

of generality, we can consider an artificial objective function

f0 : D ⊂ R
n → [0, 1], wherex ∈ Uniform(D), f0(x) ∈ Uniform[0, 1], x andf0(x) are i.i.d.

(1)
as this ”most random” function. Again, without loss of generality, we can consider
D = [0, 1]n. Such anf0 contains no structure stable over different runs, therefore an
ideal optimisation methodwill arrive at different regions of the search space over a
series of runs. Indeed, over multiple runs, it will cover theentire search space with
uniform probability.

As shown in Fig. 2, the typical progress of a capable evolutionary algorithm con-
sists of three stages [1]: in the beginning, the population is spread randomly over the
domain, roughly halfway through the optimisation the population starts rolling down
the hill, and in the final stages of optimisation the whole population is concentrated
around the minima. Thanks to the construction off0, independent runs of the algo-
rithm provide different landscapes, all of identical difficulty (due to the i.i.d. property),
where populations move/converge towards minima located atdifferent parts of the do-
main. In other words, over a series of runs of the algorithm, the situation shown in Fig.
2 is replicated for different landscapes where the optimisation process arrives at differ-
ent parts of the domain - that is, red points will be distributed all over the interval. In
the following section we show that minima off0 are in fact distributed uniformly over
D. This implies that the distribution of minima found by an ideal unbiased algorithm
across different runs should be uniform as well.

2.1 Distribution of minima of f0
Assume that pointsZ1, ..ZN are independent and identically distributed. Assume that
each of these points (say,Zi) is assigned a markXi and assume thatX1, X2, .., XN

is a collection of i.i.d. random variables with an absolutely continuous distribution.
Assume also that the setsX1, X2, .., XN andZ1, ..ZN are mutually independent. Let
I = argmini Xi be the index of the point with the lowest mark.

Remark 1 We only assume that the distribution is absolutely continuous for conve-
nience here. This ensures thatP (Xi = Xj) = 0 for anyi 6= j. This makes our proofs
shorter and more transparent but is not essential for our statements to hold.
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Remark 2 In the notation above,Z1, ..ZN represent the vector of points’ coordinates
andX1, ..XN represent values of the objective function at these points.

Proposition. The distribution ofZI is the same as that ofZ1 (or the same as the
distribution of any of the initial points).
Proof. Note first thatP (I = i) = 1/N for anyi. This is evident as

N
∑

i=1

P (I = i) = 1,

and all probabilities are equal to each other due to the identical distribution ofX .
We can now calculate, for any set of pointsA

P (ZI ∈ A) =

N
∑

i=1

P (I = i)P (ZI ∈ A|I = i) =

N
∑

i=1

1

N
P (Zi ∈ A) = P (Z1 ∈ A)�

This shows that minima off0 defined in (1) are distributed uniformly overD.

2.2 Further comments onf0
Since, by construction,f0 is in effect a noisy signal with zero smoothness i.e., no cor-
relation between neighbouring points, it is clearly not suited for testing the quality of
fitness improvement or as a direct guide in assembling the algorithm. As explained
previously, the rationale behind usingf0 is solely to elucidate the underlying structural
bias of the tested algorithm. More comments on this issue aregiven in Section 5.1.

3 Numerical results

In this section we illustrate the use off0 in investigating the occurrence of structural
bias in different algorithm configurations. We apply this ’structural bias probe’ to two
algorithms that are frequently deployed in optimization practice and research, namely:
a genetic algorithm (GA), and particle swarm optimisation (PSO). In both cases, our
instantiations of the algorithms (and the subsequent further analyses), are in the con-
text of optimization in a continuous decision space (i.e. the optimization of vectors of
real-valued parameters). Combinatorial optimization is certainly also of interest, and
we later briefly speculate on structural bias in that scenario. However, our focus here
on real-valued decision spaces is consistent with the observation that real-valued opti-
mization (particularly via PSO variants) is the most rampant breeding ground for the
publication of new algorithms. As such, real-valued optimization can be considered in
relatively more need for techniques that can help researchers or practitioners discern
performance-related properties of new algorithm designs.

3.1 Typical genetic algorithm

As the first example of a randomised population-based algorithm used to solve the
problem of minimisation off0 : [0, 1]n → [0, 1], we consider the most straight-forward
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example - a typical steady-state genetic algorithm (GA) where solutions are encoded
as strings of real values of lengthn and are subject to the following transformations:
1. initialize and evaluate a population ofN solutions within the boundaries of problem
domain
2. continue until the maximum number of fitness evaluations is reached (300000)
2.1. selectparent1 from the population via tournament selection [31] of sizent (here,
nt = 2) in the following manner:
2.1.1. select at randomnt solutions;
2.1.2. based on their fitness values, choose the best solution to become a parent;
2.2. similarly, selectparent2 via tournament selection of sizent, independently on the
choice of another parent
2.3. generate child solution asparent1+α∗(parent2−parent1),α ∼ Uniform(−d, 1+
d) re-sampled for each dimension,d = 0.25
2.4. with probabilityp = 1, mutate child solution via Gaussian mutation – perturb
every coordinate independently withδ ∼ N(0,md ∗ r), md = 0.01, r is the width of
search domain in this coordinate
2.5. evaluate child solution
2.6. if child solution is better or equal to current worst solution in population then
child solution replaces it
2.7 end of loop, go to step 2.�

All specified parameters represent standard choices in the field of evolutionary
computation. If a result of an operator, in some dimension, goes outside the domain, it
is corrected in a saturation manner where it is forced to the closest domain boundary
in this dimension. The dimensionality of the problem is set to n = 30 as a value high
enough to be relevant for the field but low enough to allow clear visualisation. This also
dictates the choice of the termination criterion as 300000 fitness evaluations, following
[32]. We consider three settings for population size:N = 5, N = 20, N = 100. To
provide enough statistical power for the results,50 independent runs are considered for
each parameter setting. According to[33], in the limit, this algorithm converges to the
global minimum of any real-valued functionf : M → R whose values are bounded
below andM is an arbitrary domain.

3.2 Numerical results for a typical genetic algorithm

A convenient way of visualising multidimensional data is bythe method of ’parallel
coordinates’ [34], [35] which allows an insight into the space regardless of its dimen-
sionality. Using this technique to visualise ann-dimensional point, a backdrop con-
sisting ofn vertical equally spaced parallel lines is drawn and a point inn-dimensional
space is represented as a collection of markers on each of thesen lines, each matching
a value of the corresponding coordinate. Traditionally, these markers are connected to
form polylines (piecewise linear curves) which can reveal 2-dimensional patterns for
certain high dimensional properties [36]. Unfortunately,finding the correct layout for
each dataset to facilitate data exploration is a problem on its own [37], especially for
high values ofn [38]. Such investigation is currently beyond the scope of our inter-
ests, however it may become of interest for algorithms that use highly correlated search
strategies. Since the focus of this paper is solely the movement of the population of
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Figure 3: Positions of points with the best fitness values in the first (left column) and
the last (right column) populations of 50 runs of the considered GA for different pop-
ulation sizes in parallel coordinates; horizontal axis shows the ordinal number of the
coordinate, vertical axis shows the range of this coordinate; fitness value of each point
is shown in colour. A clear bias towards the centre of the search space is visible in the
last populations as population size increases.
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Figure 4: Evolution in time of50 populations of a typical genetic algorithm in selected
dimension forN = 5, N = 20 andN = 100. Horizontal axis shows values of
coordinate, vertical axis represents time. Colour of the dots corresponds to values of
objective function

points in the search domain, unconnected markers suffice. Using colour allows us to
visualise the additional dimension - the value of the objective function at the point.

Following the technique described above, Fig. 3 shows, in parallel coordinates,
positions of points with the best fitness values in the first (left column) and the last
(right column) populations for50 runs of the considered genetic algorithm, for different
population sizesN = 5,N = 20,N = 100. Clearly, for all population sizes, the initial
distribution of positions in the left columns of the figures is close enough to uniform.
However, in the right column, instead of seeing a near-uniform distribution of points,
a clear bias towards the centre of the search space becomes more evident in the final
populations as population size increases. In other words, agenetic algorithm with
bigger populations tends to avoid the corners of the search domain and concentrates
more on sampling points closer to the middle of the interval,for no obviously apparent
reason. Such behaviour is barely noticeable forN = 5, more pronounced forN =
20 and is very clear forN = 100. These anomalies represent structural bias. Our
numerical results also suggest that this behaviour is consistent throughout time and
does not depend on termination criterion - consecutive populations spread out less and
less from the middle of the search domain, see Fig. 4 which shows the evolution in
time of positions of all points of50 populations in a selected dimension for all three
population sizes.We therefore conclude that, owing to structural bias, a typical genetic
algorithm with a large population potentially wastes the fitness evaluations budget via
oversampling a region of the search domain, to the detrimentof overall performance.

3.3 Typical Particle Swarm Optimisation algorithm

Particle swarm optimisation (PSO) is another example of a population-based optimi-
sation algorithm introduced by Kennedy and Eberhart in [39], and then developed in
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various variants for test problems and applications. The main metaphor employed in
particle swarm optimisation is that a group of particles makes use of their personal and
social experience in order to explore a decision space and detect solutions with high
performance.
More specifically, to minimisef0 : [0, 1]30 → [0, 1], the following steps are taken:
1.1. initialise a population ofN solutions within the boundaries of the problem at
t = 0
1.2. evaluate every solution in the population based on the objective function
1.3. for each solution, assign its personal best positionppbt = p0
1.4. assign the global best position topgbt
1.5. for each solution, initialise a speed vectorv0 = (v10 , ..., v

n
0 ) such thatvi0 ∼

Uniform[0, 0.1]
2. continue until the maximum number of fitness evaluations is reached (300000)
2.1. update the speed vector for every solution in the population asvt+1 = c0vt +
c1α1(p

pb
t − pt) + c2α2(p

gb
t − pt), whereα1, α2 ∼ Uniform[0, 1] are re-sampled in-

dependently for each solution andc0 = 1, c1 = 2, c2 = 2

2.2. if‖vt+1‖2 > 0.2 substitute it coordinate-wise with
0.2vi

t+1

‖vt+1‖2

, i = 1, ..., n

2.3. update the position of every solution in the populationaspt+1 = pt + vt+1, eval-
uate the new solution
2.4. if needed, update personal best positionppbt for each solution
2.5. if needed, update the global best positionpgbt
2.6. t = t+ 1, end of loop, go to step 2�

As well as in the previous section, the algorithm and specified parameters represent
standard choices in the field of evolutionary computation. To allow fair comparison,
the termination criterion is kept as300000 fitness evaluations. Finally, echoing the
experiments done with a typical genetic algorithm, here we also use the three settings
for population sizeN = 5, N = 20, N = 100, and we perform50 independent runs
for each.

3.4 Numerical results for PSO

The same techniques as in Section 3.2, applied to the analysis of PSO, reveal a rather
different situation as shown in Fig. 5. As expected, the distribution of initial positions
of points with the best fitness shown in the left columns of thefigures is close enough to
uniform. But, as in the case of the typical genetic algorithm, instead of a near-uniform
distribution, positions of the final points show a clear bias, albeit of a different nature. A
more complex type of dependency of the population size on thebias induced is present
for the highest and lowest values of the considered population sizes. In the case of
N = 5, positions of final points clearly group around the corners and avoid regions in
the middle of the search domain. Meanwhile, forN = 100, the final points tend to be
positioned closer to one corner of the hypercube domain and avoid its opposite corner.
The behaviour of PSO withN = 20 is also not ideal in terms of the distribution of
final points, as they appear slightly further apart comparedto the initial distribution.
These anomalies clearly demonstrate the presence of structural bias in the considered
version of PSO. Moreover, since none of the operators that makes up this PSO clearly
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Figure 5: Positions of points with the best fitness values in the first (left column) and
the last (right column) populations of 50 runs of the considered PSO for different pop-
ulation sizes in parallel coordinates; horizontal axis shows the ordinal number of co-
ordinate, vertical axis shows the range of this coordinate;fitness value of each point is
shown in colour. A more complex type of dependency of the population size on the
bias induced is present for the top and bottom values of the population size.
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predispose its population to cluster in such manner, this effect seems to be emerge from
their combined dynamics.

3.5 Remarks regarding the random generator

The empirical results for the genetic algorithm in this paper are produced involving the
use of a standard Java 48-bit random generator underpinning, where required, the gen-
eration of ’random’ numbers within the implemented algorithm. This commonly-used
pseudorandom generator is based on the linear congruentialgenerator (LCG) with a pe-
riod of248 ≈ 2.8·1014, while the seed is automatically generated via the system routine
System.currentTimeMillis(). Meanwhile, our empirical PSO results are produced using
the standard Unix functiondrand48with the same parameters as above and the seed
value is obtained viasrand48. It is well-known [40] that when a series of consecu-
tive values are obtained from this type of random generator to form multidimensional
points, they end up lying on a finite number of hyperplanes intersecting the intended
domain. This property is usually referred to as the Marsaglia effect. Clearly, unless the
precision of the random generator is close to the precision used by the algorithm, this
constitutes a problem as, even in the limit, these points cannot fill all of the domain.
The number of such planes is bounded by(n!m)1/n, wheren is the dimensionality and
m is the modulus of the LCG. For the case of30 dimensions, the bound on the number
of planes is36. The quality of each version of LCG can be further assessed based on
values of increment and multiplier via estimating the distance between the hyperplanes.
However, such calculations are feasible reliably only for low dimensionalities [41].

Another usual concern about random generators is how randomtheir output actu-
ally is, in the sense of correlation between successive instances (as opposed to their
coverage of the domain). There are two kinds of random generators which differ in
how the numbers are produced: true random generators samplesome source of en-
tropy [42], whereas pseudorandom number generators use a deterministic algorithm
to produce random looking numbers. True random generators measure some physical
phenomenon that is expected to be random and then compensates for possible biases in
the measurement process. Example sources include measuring atmospheric noise, ther-
mal noise, and other external electromagnetic and quantum phenomena. Being truly
non-deterministic and aperiodic, unfortunately, these generators are also slow, costly,
inefficient and not reproducible which makes them a bad choice for practical sampling
applications. It is still an open question as to whether it ispossible in any practical way
to distinguish the output of a well designed pseudorandom generator from a perfectly
random source without knowledge of the generator’s internal state [42].

How should these observations concern us? Like virtually all implemented stochas-
tic algorithms, our ’random’ numbers arepseudorandom. Intuitively, we might expect
bias in the pseudorandom generator to be swamped by the combined action of the al-
gorithmic operations and subsequently be invisible in the results – this is, indeed, the
common (implicit) approach. However, the design off0 explicitly removes one of the
several dynamic forces that we would otherwise expect to contribute to this ’washing
out’ of any effects from the pseudorandom generator. To some, combining this with
the perhaps-unexpected appearance of evidence for structural bias may lead to a sus-
picion that what we have observed could be artefacts of the pseudorandom generator.
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Intuition for the opposite conclusion is well-fuelled. Forexample, the Marsaglia effect
is quickly obscured by aspects of the algorithm that distortthe uninterrupted sequential
mapping that the Marsaglia effect assumes, and (especially) are dense in operations that
will move points away from the ’Marsaglia planes’. Also, as we discuss further below,
modern pseudorandom generators are quite effective at avoiding periodic correlations.
Nevertheless, in this section we place the pseudorandom generator under close scrutiny
in order to uncover evidence as to whether it may have a bearing on our findings.

To achieve this we have devised three tests, borrowing theirdesign from the body
of research that has gone into designing new classes of pseudo-random generators and
testing their properties from various angles [43], [44], [45], [46], [42]. Each test within
these test suites is aimed at finding a different kind of non-randomness, but as yet
no specific finite set of tests is deemed complete to guaranteethat some generator is
foolproof [42]. For the purposes of this paper, the aspects mostly of interest are true
uniformity and the absence of correlations in a long sequence of random values. There
is no problem with uniformity as generators employed for this paper are among the
most popular implementations used and tested widely2. Regarding cross-correlations
in the sequence of random values, apart from the aforementioned Marsaglia effect
investigated for low dimensionalities, little in the way oftheoretical results is avail-
able. Values of cross-correlation lag (or ’effective period’ as we refer to it here) which
need to be studied usually exceed the dimensionality of the objective function, since
the majority of algorithms use random values for altering various parameters through-
out the run. Careful examination of the pseudocode providedin Sections 3.1 and 3.3
shows that both the genetic algorithm and PSO start with initialisation of their popu-
lations which require(dim+ 1)Npop random numbers for the genetic algorithm3 and
(dim+1+ dim)Npop random numbers for PSO, wheredim = 30 is the dimensional-
ity of the domain andNpop is population size set to5, 20 and100 for both algorithms.
Subsequent functioning of the algorithm is periodic in the following sense: producing
every new point to be examined by the algorithm requires the same amount of random
numbers -2dim + 5 for the genetic algorithm and2dimNpop + 1 for PSO. In other
words, if i is an index of the element of the pseudorandom sequence whichis used to
generate the position of the new point in dimensionj, theni+pe is the index of the next
pseudorandom element which will be used to generate the position of the subsequent
new point in dimensionj, wherepe is the effective period4.

To eliminate the possibility that structural bias observedin algorithms considered
in this paper originates from the nature of the pseudorandomnumber generation rather
than being inherent to the algorithm, let us suppose the opposite: there is a correla-
tion between random numbers that are used to generate the values of some coordinate
of two subsequent points examined by the algorithm. To examine any such correla-
tions between elements of the pseudorandom sequences, we propose three tests.Test
1 selects some dimension and examines the correlation between consecutive pairs of
random values used to generate points in this dimension.Test 2replicates Test1 for all

2This is also supported by our tests.
3in this and the next three formulas, one extra random number is added to account for evaluation off0
4For reference, the Marsaglia effect bounds for these effective periods are the following:41 for 65

dimensions for GA withNpop = 5, 125 for 301 dimensions for GA withNpop = 20, 455 for 1201

dimensions for GA withNpop = 100 and2221 for 6001 dimensions in all three PSO implementations.
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Figure 6: Schematic explanation of tests1–3 examining correlations between elements
of random sequences. Squares represent consecutive elements of random sequence and
loops denote considered correlations where length of the loop is constant for each test
and referred to as period of this test. Such types of correlations can potentially induce
patterns similar to those produced by structural bias.

dimensions simultaneously.Test 3tracks the correlation between consecutive values in
the pseudorandom string or, in other words, replicates Test1 with period1. Schemati-
cally, these tests are explained in Fig. 6, where squares represent consecutive elements
of the pseudorandom sequence and loops denote the considered correlations; the length
of the loops is constant for each test and referred to as the period of the test.

We apply these three tests to each of two kinds of long sequences, one coming from
a true random generator and another from a pseudorandom generator used to produce
results in Section 3. Our ’true random’ sequence uses data from a reputable online
servicerandom.orgwhich generates randomness via atmospheric noise picked upby a
radio. This service is subject to a battery of daily tests which confirm that it maintains
all of the randomness properties claimed [42]. In addition,a series of sequences has
been produced via the standard Java generator discussed above for a selection of real-
istic values of seeds. Lengths of all sequences is set to 100000 elements. Results of
tests1-3 for these two sequences are shown in Fig. 7, where the period for tests1 and
2 is set to65, which is the effective period of our genetic algorithm implementation for
population size5. The period for test3 is 1, as explained above. Visual inspection does
not reveal any significant differences between the true and pseudorandom sequences.
Results for other period values and for random sequences with different seeds are of
identical nature.This suggests that our observations of structural bias do not originate
from the random generator but rather represent artefacts from the iterative application
of algorithmic operators.

In practice, the situation is slightly more complicated, since for some algorithms
(like the genetic algorithm considered in this paper), not all examined points enter the
population. This means that some of the dots shown in Fig. 7 are sieved out and others
are moved via a series of trivial parallel projections depending on whether or not the
point constructed with these dots has entered the population based on its fitness values
and particulars of the algorithm. At the current stage of ourresearch, simulations
involving such tracking is impractical and deemed of no particular value.

Finally, while investigating known properties of pseudorandom generators, we stum-
bled upon a good example of a highly (structurally) biased algorithm. In what was a
serious attempt by a skilled algorithm designer to design a ”super-random” number
generator, Donald Knuth came up withAlgorithm K, which turned out to have unex-
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(a) Test1 for pseudorandom se-
quence

(b) Test2 for pseudorandom se-
quence

(c) Test3 for pseudorandom se-
quence

(d) Test 1 for true random se-
quence

(e) Test 2 for true random se-
quence

(f) Test 3 for true random se-
quence

Figure 7: Correlations between elements of pseudorandom sequences of different na-
ture. Results of tests1-3 for two sequences obtained from pseudorandom (first line)
and true random (second line) generators each made up of100000 numbers from[0, 1].
Period for tests1 and2 is set to65 which is a value of effective period of GA im-
plementation considered in this paper for population size5; period for test3 is equal
to 1. Visual comparison does not reveal any significant differences between true and
pseudorandom sequences. Results for other period values and random sequences with
different seeds are of identical nature. This suggests thatstructural bias cannot origi-
nate from random generator but rather represents artefactsfrom the iterative application
of algorithmic operators.

17



pected properties [47]. Given a 10-digit decimal number, the algorithm functions as
follows5:

1. Choose number of iterations. SetY ← ⌊ X
109 ⌋, the most significant digit ofX

(Steps 2 to 13 are executed exactlyY +1 times, that is randomizing transforma-
tions are applied a random number of times.)

2. Choose random step. SetZ ← ⌊X/108⌋ mod10, the second most significant
digit of X . Go to step(3 + Z) (i.e., jump to a random step).

3. Ensure≥ 5 · 109. If X < 5000000000, setX ← X + 5000000000.

4. Middle square. ReplaceX by ⌊X2/105⌋ mod1010.

5. Multiply. ReplaceX by 1001001001X mod1010.

6. Pseudo-compliment. IfX < 100000000, then setX ← X + 9814055677;
otherwise setX ← 1010 −X .

7. Interchange halves.X ← 105(X mod105)+⌊X/105⌋ i.e., interchange the low-
order five digits ofX with the high-order five digits.

8. Multiply. Same step as 5.

9. Decrease digits. Decrease each nonzero digit of the decimal representation ofX
by one.

10. 99999 modify. If X < 105, setX ← X2 + 99999; otherwise setX ← X −
99999.

11. Normalize. (At this pointX cannot be zero.) IfX < 109, setX ← 10X and
repeat this step.

12. Modified middle square. ReplaceX by ⌊X(X − 1)/105⌋ mod1010.

13. Repeat? IfY > 0, decreaseY by 1 and return to step 2. IfY = 0, the algorithm
terminates withX as the desired ”random” value�

Initial tests of this generator revealed that, depending onthe starting value, the output
of this algorithm is far from being ”super-random”: it either converges to the 10-digit
value6065038420, or the sequence begins to repeat itself after7401 values, in a cyclic
period of length3178 [47]. This example strengthens the view that thoughtlesslyas-
sembled overcomplicated algorithms have elevated chancesof possessing undesirable
and intractable properties.

5The pseudocode is given here to demonstrate how complicatedthe algorithm is; there is no need to
follow it in detail.
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4 Structural analysis of a simplified genetic algorithm

In this section we are going to look at a simplified version of agenetic algorithm, and
theoretically analyse this algorithm with a view to uncovering dynamics that may cause
structural bias. Our simplifications will allow us to analyse changes in the sample vari-
ance of the positions of points in the population when we generate a new point (and
replace one from the current population). However, the simplifications, though neces-
sary to facilitate analysis, do not materially change the performance of the algorithm on
a function such asf0, as we explain later with both heuristic arguments and numerical
experiments.

Consider a genetic algorithm, as in Section 3.1, with the following amendments to
its operation.

1. Selection is uniformly random – i.e. there is a purely random choice of parents;

2. the child replaces a randomly chosen member of the population.

More precisely, we define a process{X(t)}t∈Z+
, whereX(t) ∈ R

N for eacht and
Xi(0) is uniformly distributed in[0, 1] for eachi = 1, .., N . The change from timet to
time t+ 1 is as follows:

• Pick two numbers from1 toN at random (with replacement). Let these numbers
bej andk.

• Generate a new coordinate

Y = (min (αXj + (1 − α)Xk + Z, 1))
+
, (2)

wherex+ = max(x, 0),α is a random variable uniformly distributed on(−d, 1+
d) for a positived andZ is a Normal random variable with mean0 and variance
σ2.

This represents a choice of a new point which is absorbed at the boundaries.

• Pick a number from1 toN at random; let this number bei.

• ReplaceXi by Y .

Let S2(t) denote the sample variance of the vectorX(t)

S2(t) =
1

N − 1

(

∑

Xi(t)
2 −

(
∑

Xi(t))
2

N

)

.

We can prove the following theorem.

Theorem 1 If

d <
−1 +

√

3N+9
N−1

2
,

then there exist0 < K <∞ andε > 0 such that ifS2(t) > K, then

E
(

S2(t+ 1)− S2(t)|X(t)
)

< −ε.
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We prove the theorem by bounding the sample variance of the real next step by
the sample variance of the next step without absorption at the boundaries. Indeed, it is
immediate to check that the sample variance of the non-absorbed values at the next step
is an upper bound for the sample variance of the original (possibly absorbed) values,
and the difference between (non-absorbed) sample values attwo subsequent steps is
equal to

(N − 1)E
(

S2(t+ 1)− S2(t)|X(t)
)

=

1

N3

∑

j,k,l

(S2 −X2
l +EY 2) − 1

NE

(

1
N3

∑

j,k,l(S1 −Xl + Y )2
)

− S2 +
1
N S2

1 ,

whereY is defined in (2),S2 =
∑

Xi(t)
2 andS1 =

∑

Xi(t). The remainder of
the argument consists in re-arranging terms and noting thatEU = 1/2 andEU2 =
1 + d+ d2

3 �

Note that

K =
σ2(1− 1/N)

N + 1− 2 1+d+d2

3 (N − 1)
.

The theorem implies that if the sample variance of the points’ locations is larger
thanK, then on average it will decrease. This, heuristically, means that the points
will tend not to spread over the entire interval[0, 1]. We conjecture that there is a
stronger result showing that points’ locations converge toa strict subset of[0, 1]. This is
supported by our numerical results but so far we have not demonstrated it theoretically.

For vectors withN components all taking values in[0, 1], it is clear that the largest
value of the sample variance is N

2(N−1) and is always bounded away from0 (in fact,
converges to1/2 asN → ∞). One can easily see, however, thatK → 0 asN → ∞.
This means that for a sufficiently large number of points in the population, the range of
configurations in which the average change in variance is negative (i.e. configurations
from which the points tend to become spread less at the next time instance than at the
previous one) is not empty and becomes larger as the number ofpoints increases.

Finally, before closing this section with a brief empiricaltest of the simplified algo-
rithm that we have analysed, we note certain observations that follow from the theorem,
and that we will refer to subsequently. First, numerical exploration of the expression
of Theorem 1 with typical and reasonable values suggests that the implied ’reducing
variance’ dynamics may be commonplace in genetic algorithmdesigns. Further, and
interestingly, asN (population size) increases, the ’burden’ ond to be small increas-
ingly relaxes, which suggests that structural bias will become more prominent at larger
population sizes, despite perhaps high levels of exploration (largerd) among the al-
gorithm’s operators. We note that this expectation, for more prominence in structural
bias at higher population sizes, resonates strongly with our empirical findings in Sec-
tion 3.1. Next, considering that ’difficult’ landscapes maytend to keep a population
scattered across multiple local optima (at least in early ormiddle stages of a genetic
algorithm’s search), the theorem indirectly suggests thatthe consequent high position
variance in such circumstances will exacerbate structuralbias. In other words, the the-
orem provides a theoretical root suggesting that many kindsof ’difficult’ landscapes
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(where we might expect high positional variance during search) will be sensitive to an
algorithm’s structural bias, while ’easy’ landscapes (forwhich a good algorithm can be
expected to focus quickly around optimal areas, with consequent low variance) will be
relatively insensitive to an algorithm’s structural bias.In Section 5, after first present-
ing approaches to visualise and quantify structural bias, we perform experiments that
allow us to start to evaluate these suggestions.

Numerically, the behaviour onf0 of the simplified genetic algorithm is very similar
to the behaviour of the typical genetic algorithm presentedin Section 3.1 as Figure 8
shows. One can expect this due to simple heuristic arguments. Indeed, given that
fitness at every step is chosen from a uniform distribution, independently of the fitness
of all other points, and a point will only be accepted if its fitness is better than that
of at least one existing point, the fitnesses of all points will converge to the optimal
one. Therefore removing a random point instead of the worst one should not strongly
influence the performance of the algorithm. The same concerns the choice of parents.
Thus, this analysis approximately describes the typical genetic algorithm.

5 Quantifying structural bias and observing its conse-
quences

Returning briefly to analogies, let us consider a football team running trials for a new
goal-keeper. Imagine that the final choice is to be made between two persons: one
talented but rather lazy keeper who prefers to stand still beside the left goalpost, no
matter what the actions of the striker, and one very energetic keeper who can reach
every part of the goal but occasionally fails. In this analogy, we intend the goal to
represent the problem domain, the goal-keeper plays the role of the algorithm and the
strategy of the striker, unknown to the goal-keeper, represents the objective function.
It is then the duty of the goal-keeper to locate as close as possible a position where the
ball is going to approach the goal, just as the algorithm needs to identify the region of
the goal which contains an optimum of the current objective function. In life, it can
happen that, by pure luck, the striker is equally limited andcan hit only the region of
the left goalpost. Clearly, our lazy goalkeeper will have noproblem defending the goal
from such a striker. However, as it usually happens that strikers tend to target different
regions of the goal, a more flexible goalkeeper will end up being a better choice for the
team regardless of his or her occasional shortcomings.

We propose, first of all, a simple visual test for structural bias that amounts to
visualising the performance of the goal-keeper in such a trial. Our visual test is meant to
identify whether or not an algorithm has any structural bias, or to compare the degrees
of such bias among a suite of algorithms. In this test, conclusions can be made based
on the distribution of coordinates of points with the best fitness values in the final
populations of the algorithms under consideration runningon f0 for roughly the same
fitness evaluation budget as intended for their deployment on real objective functions.

Application of this visual test to the algorithms explored in Section 3 amounts
to observing the parallel coordinates figures presented earlier, thereby inspecting the
distributions of the positions of the50 best points (the best point from each of50
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Figure 8: Positions of points with the best fitness values in the first (left column) and
the last (right column) populations of 50 runs of thesimplified genetic algorithmfor
different population sizes in parallel coordinates; horizontal axis shows the number of
coordinate, vertical axis shows the range of these coordinate; the fitness value of each
point is shown in colour. A clear bias towards the centre of the search space is visible
in the last populations as population size increases.
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Figure 9: Results of the Kolmogorov-Smirnov tests for the considered genetic algo-
rithm and PSO, with three population sizes each. For each algorithm, the test is run
independently for each dimension of the problem; thep-value returned by each test
is shown with a marker. Thep-values in the first, third and sixth columns are signifi-
cantly lower than others, which translates into stronger structural bias present in results
for these algorithms.p-values shown in the second column correspond to the case of
milder structural bias, meanwhile the fourth and fifth columns characterise algorithms
with the weakest structural bias observed in our series of experiments. These results
support our conclusions regarding strength of structural bias based on purely visual
analysis of Figs. 3 and 5.

independent trials), for each of the algorithm configurations. Such inspection suggests
that an appreciable level of structural bias is exhibited bythe genetic algorithm with
population size100 (Fig. 3(f)) , and by PSO with population sizes of bothN = 5 and
N = 100 (Figs. 5(b), 5(f)). Meanwhile, the genetic algorithm withN = 20 exhibits
milder structural bias, see Fig. 3(d). The remaining two cases – the genetic algorithm
with N = 5 and PSO withN = 20 – seem to provide satisfactory performance in
terms of structural bias, but are clearly more difficult to differentiate objectively based
on a purely visual test of Figs. 3(b) and 5(d).

For an objective test of the level of structural bias, we propose use of the Kolmogorov-
Smirnov test [48], [49], [50], specifically to compare the empirical distribution function
of the sample of coordinates and the cumulative distribution function of the uniform
distribution. By using the Kolmogorov-Smirnov test in thisway, we obtain ap-value
that expresses the probability that the sample comes from a uniform distribution given
the null-hypothesis is correct. Fig. 9 summarises the results of this test, performed
independently for each dimension, for the same sets of points discussed earlier in the
context of visual tests. These results numerically supportour aforementioned conclu-
sions based on visual analysis of Figs. 3 and 5. For example, the cluster of lowp-values
plotted against ”PSOp5f0” corresponds to the observation of high levels of structural
bias for PSO withN = 5.
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Our proposed approach to quantifying an algorithm’s inherent structural bias there-
fore comprises running repeated trials of the algorithm(s)in question usingf0 as the ob-
jective function, and subsequently applying one or both of:parallel-coordinates based
visual inspection of the final points, and the Kolmogorov-Smirnov test to assess the
uniformity of the distribution of those points. The proposed method is computation-
ally highly efficient in comparison to approaches (such as that of [30]) that require
numerous optimization trials with the actual objective function (and also needing to
be re-applied for every new objective function of interest). Our proposed approach is
potentially suitable as an algorithmic design tool for general use. It is important to
note that, on its own, a strategy of maintaining a more even coverage of the search
space by the algorithm does not ensure a satisfactory algorithmic design capable of
fast convergence to a near-optimum solution. The sole objective of such a strategy is
to identify a combination of operators that forces the algorithm to explore the domain
with more equal probability. This strategy is therefore complementary and should be
used in conjunction with more comprehensive design strategies which ensure other
favourable properties of optimisation algorithms such as those discussed in Section 1
or other properties specific to a particular class of algorithms.

5.1 Further numerical results: consequences of structuralbias on
a suite of test functions

To investigate the consequences of structural bias when oneaims to optimize a stan-
dard test function, in this subsection we perform experiments using the CEC 2005 test
function suite, which is widely used to test and compare algorithms in the field of evo-
lutionary computation [32]. Exact specifications of the CEC2005 functions can be
found in [32]. The benchmark suite comes along with source code that allows users
to treat the individual functions in the test suite as ’blackbox’ functions that simply
return a fitness value when given ann-dimensional coordinate. No other information
is provided to the optimization algorithm, except for specifications of the range of the
search domain. The benchmark suite makes its functions available for specific dimen-
sionalities (e.g.10, 30 and50).

For the purpose of illustration, we select a limited number of functions from the
CEC 2005 benchmark suite for which the genetic algorithm considered in this paper:

• f8 shifted rotated Ackley function in[−32, 32]30 with global optimum on the
bounds

• f9 shifted Rastrigin function in[−5, 5]30,

• f13 shifted expanded Griewank and Rosenbrock function in[−5, 5]30,

• f14 shifted rotated expanded Scaffer F6 function in[−100, 100]30,

• f21 rotated hybrid composition function in[−5, 5]30,

• f24 rotated hybrid composition function in[−5, 5]30.
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Parallel coordinates visualisations of our genetic algorithm’s results on these func-
tions are shown in Figs. 10, 11, 12. Each individual plot summarises the results of
50 independent trials of the genetic algorithm on the function concerned, by showing,
in parallel coordinates fashion, 50 30-dimensional points, comprising the best point
reached in each trial. It is important to stress that interpretation of these figures should
beentirely differentfrom interpretation of those shown in Figs. 3 and 5. Unless specif-
ically constructed so, it is not expected that the final distribution of positions of the best
points in the final generation is close to uniform in the case of any function other than
f0. In sharp contrast to thef0 results, we would naturally expect in these plots to see a
strong effect due to the combined activity of selection and the shape of the landscape,
resulting in the identification of regions at or close to optima of the objective function.

At any point in time during the optimisation process, two forces can be concep-
tualized which simultaneously act on the population - landscape bias and structural
bias. The first force pulls the population towards better values of the objective func-
tion, meanwhile the second force can be thought of as pullingthe population towards
’attractors’ in the domain (perhaps complex attractors) whose nature arises from the
combination of algorithm design choices. Both of these forces are unknown and, there-
fore, their sum – which defines population movement – is also unknown. The use off0
to help quantify structural bias is precisely based on the idea of eliminating one of the
unknowns, the ’landscape force’, hence revealing any structural bias. It follows that,
to interpret the visualisations of Figs. 10, 11, 12, we can proceed as follows. For a
given objective function, we can observe how the distribution of final points varies as
a function of the algorithm configurations considered, and consider how this correlates
with the relative degrees of structural bias previously observed (via experiments with
f0) over the same set of configurations. Obviously, attention should also be paid to the
final attained values of the objective function and their variances.

In such analysis of results over the CEC 2005 benchmark suite, we have observed
three types of behaviour, which we conceptualise as resulting from the combination of
structural bias in the algorithm configuration itself combined with more or less sensi-
tivity to that bias inherent in the objective function at hand:

• Sensitivityto structural bias, as exemplified byf8 andf9, see Fig. 10. Forf8, all
three series of runs attained similar values of final fitness over50 runs, but runs
with larger populations failed to find good solutions closerto the boundary of the
domain. We attribute such failures to structural bias of thegenetic algorithm, as
also observed forN = 50 onf0. Onf8, the genetic algorithm exhibits behaviour
overall similar to the case off0. Meanwhile, forf9, final fitness values are quite
different across the three series of runs, but the variance of positions of final best
points demonstrates the pattern of sensitivity to structural bias.

• Insensitivityto structural bias, as exemplified byf13 andf21, see Fig. 11. All
parameter settings considered lead to similar results in terms of the fitness values
attained, positions of final best points and variances in their positions.

• High sensitivityto structural bias, as exemplified byf14 andf24, see Fig. 12.
In the case off14, quite similar values of final fitness are attained over the three
series of runs; however, drastic changes are clear from one series to another in
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terms of variances of positions of final best points. ForN = 5, these points fill
the whole domain and better points, indicated on the figure with red markers, are
uniformly spread out across the domain. The situation is to some extent similar
for N = 20 but all points start to shift towards the middle of the interval and
those with better fitness values in particular. ForN = 100, no final best points
are located in the outer regions of the domain, but their distribution in the centre
of the domain is rather uniform. As forf24, there are drastic changes both in
terms of final fitness values and distribution of positions offinal best points. It
is interesting to note that for the genetic algorithm withN = 100 on f24, it is
rather easy to find a region with low fitness values consistently over the series
of 50 runs suggesting that this particular function possesses a special property of
some kind.

As regards other functions from the CEC2005 suite, it is worth mentioning that
functions in the top of the list tend to be less sensitive to the structural bias of our
genetic algorithm. These functions are known to be unimodalor close to unimodal
[32]. This observation aligns well with our speculation in Section 4, and suggests that
the theoretical analysis of the simplified genetic algorithm may have captured at least
part of the essence of the factors that underpin structural bias and also the sensitivity
to structural bias of any given objective function (via informed expectations of how the
landscape may affect population variance). However, we areof course very much only
at the beginning of a theoretical understanding of structural bias, in terms of both un-
derpinning causes and of the effects of particular landscapes. This state of affairs goes
hand in hand with a need for approaches to investigate and quantify inherent structural
bias, such as proposed in this paper. Returning to the relative sensitivity to structural
bias of different objective functions, we speculate that further work, involving anal-
yses of particular collections of objective functions, might reveal similarities in the
structure of basins of attraction in the landscapes might correlate with similarities in
sensitivity. Empirically, we have seen that evolving populations seems to be less ”con-
fused” by structural bias in stronger regions of attractionwhich characterise unimodal
optimisation as opposed to a weaker pull from multiple closer regions of attraction in
the multimodal situation. This also points towards similarities between the effects of
structural bias and noise in the objective function. Just asa noisy objective function
induces false optima in the landscape, structural bias deceptively pushes the evolv-
ing population towards regions potentially unremarkable in terms of objective function
values.

6 Discussion and Conclusions

A vast body of research in the field of population-based optimization algorithms deals
with efficient exploitation of information already contained within the population, while
little attention is paid to investigation of whether or not aspecific combination of al-
gorithmic operators and algorithm strategies is actually capable of reaching all parts of
the search space with equal efficiency. When an algorithm isnot capable in the latter
sense - that is, when an algorithm favours certain areas of the search space over others,
independently of the fitness function, it is exhibiting ’structural bias’.
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Figure 10: Positions of points with the best fitness in the last population of 50 runs
of the considered GA for different population sizes in parallel coordinates -f8 and
f9 are sensitive to structural bias of GA. Horizontal axis shows the ordinal number of
coordinate, vertical axis shows the full range of domain in this coordinate kept constant
for each function; fitness value of each point is shown in colour.
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Figure 11: Positions of points with the best fitness in the last population of 50 runs of
the considered GA for different population sizes in parallel coordinates -f13 andf21
are insensitive to structural bias of GA. Horizontal axis shows the ordinal number of
coordinate vertical axis shows the full range of domain in this coordinate kept constant
for each function; fitness value of each point is shown in colour.
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Figure 12: Positions of points with the best fitness in the last population of 50 runs
of the considered GA for different population sizes in parallel coordinates -f14 and
f24 are highly sensitive to structural bias of GA. Horizontal axis shows the ordinal
number of coordinate, vertical axis shows the full range of domain in this coordinate
kept constant for each function; fitness value of each point is shown in colour.
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In this paper we have argued, from both theoretical and empirical standpoints, that
structural bias is likely to be common in practice, and amplified when we would least
expect it (when we increase the population size in hope of a more exploratory search)
and when it may cause most damage (on ’difficult’ problems). When faced with the
problem of optimising a given function, the amount of information usually available
regarding its properties and landscape features is highly limited. Typically, for exam-
ple, one has no prior information at all concerning where in the search space the optima
may be. Therefore, one wishes to design an algorithm capableof locating the optima
no matter where exactly they are in the search space. This implies that the variation
operators of the algorithm must be able to, first of all, reachevery region of the search
space and, second, ideally, do so with no bias towards any particular region.

It is helpful to think of this issue in terms of intuitive ’forces’ that act on the pop-
ulation. Population-based optimisation algorithms can all be regarded as sophisticated
variants of ’generate-and-test’ algorithms; the ’test’ iseffected by the fitness function,
and provides information that the algorithm uses to guide its navigation of the land-
scape; meanwhile, ’generate’ refers to the production of new candidate solutions, and
is achieved by the algorithm’s suite of operators. In very broad terms, we conceptu-
alised population dynamics as the product of a ’landscape bias force’ and a ’structural
bias force’, respectively representing the influences of the fitness function itself, and
the algorithm’s design. To empirically investigate structural bias in this paper, we effec-
tively neutralised the ’landscape force’ by performing optimisation experiments with
f0 (as defined in Section 2). This enabled us, by visualising theresults of multiple
experiments, to observe the ’structural bias’ force in action by observing its effects on
the distribution of the final best points. Since we would expect these distributions to
be uniform in the absence of structural bias, the pattern of observed non-uniformity,
in combination with other considerations, can be taken as informative of the structural
bias inherent in the optimisation algorithm.

To some extent, one can posit an alternative explanation forsuch effects by ap-
peal to undesirable properties of the pseudo-random numbergenerator used. Such an
objection can be difficult to discount, since the effects of the complex ways in which
pseudo-random number generators are indeed non-random areextremely difficult to
predict. Nevertheless, our analysis in Section 3.5, coupled with our theoretical findings
and the pattern of empirical results, suggest that this approach reveals structural bias
rather than pseudo-random artefacts.

Our approach to revealing and quantifying structural bias is easily replicated, and
we recommend its use to investigate the structural bias thatmay be inherent in any
instantiated optimization algorithm, prior to finalising the parameteric and design con-
figuration of that algorithm to be deployed on real-world problems. Such investigation
of structural bias can be seen as an additional ’validation’step, coupled with other
investigations of the algorithm design which would normally be done to reveal the
configuration that provides the best and/or fastest solutions to the class of problems of
interest. It is interesting to speculate on the consequences of such validation in different
circumstances. If the ’best’ algorithm configuration also has minimal or no structural
bias, then all is well. However this may very often not be the case. When optimisation
is used for system identification problems (for example, determining the parameters
of a function or model that best fit a set of empirically obtained points), it is usually
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deemed important to find, as far as possible, ’all’ good solutions, or a fair representa-
tion thereof. If the otherwise preferred configuration exhibits structural bias, the ’true’
system parameters may not be uniformly accessible to the algorithm.

We have also contributed a theoretical argument that partially explains how struc-
tural bias can arise in a simple population-based algorithm. The analysed algorithm is
simplified, but exhibits the primary strategies common to almost all population based
optimization algorithms, including a parameterd that controls the degree of explo-
ration induced by the variation operator – the largerd, the higher the chance and extent
to which a new sample will extend beyond the region of search space occupied by
its parents. The crucial step in the argument is to show that,on average, and under
certain conditions, the population variance will decreasewith time, despite the clear
opportunities for search to extend beyond the current locations of the population.

If we consider a truly random algorithmRA in such circumstances, in which each
new sample is generated uniformly at random in the search space and replaces a ran-
domly chosen previous sample, we can expect unbiased coverage of the search space
and maintenance of a constant variance over time, which (under the conditions of the
theorem) would be112 . For typical choices of parameters (σ2 = 0.1, N = 50, d = 0.2),
the value ofK in the theorem is much lower than112 , suggesting that such an algorithm
will rarely be able to maintain the levels of exploration required to eliminate structural
bias without careful design. AlgorithmRA exhibits ’pure’ exploration, however any ef-
fective optimization algorithm incorporates exploitation, which is invariably achieved
by biassing samples towards the regions of previously visited points. The ’reducing
variance’ theorem suggests that such exploitation is intimately related to the emergence
of structural bias, but it also suggests that the latter can be controlled by reducing the
population size, or by raisingd (or, alternatively, by revisiting the algorithm’s design to
introduce mechanisms that introduce additional new samples in a way that is not tied
to the locations of previous samples). By raisingd, we (usually) increase the likelihood
of structural bias but reduce the efficiency of exploitation; meanwhile, by reducing the
population size we reduce the likelihood of structural bias(recall: in the context of a
genetic algorithm not too distant from the theoretically analysed version) but reduce
the level of exploration.

The inverse relationship between structural bias and population size (strictly in the
context of standard and simple genetic algorithms, which was the substrate of our the-
oretical analysis) that is at first counter-intuitive - to increase the population size would
seem to inject more diversity, which we should expect to alleviate such bias. How-
ever, we believe this phenomenon can be explained by an effect akin to ’preferential
attachment’ in the evolution of complex systems. Structural bias, manifested as the
concentration of search progress in ever narrower regions,builds on initial seed areas
which begin to attract further points. In our context, if twoparent solutions happen
to be close together, their offspring will stay nearby and increase the density in this
region, and the positive feedback dynamics of this process will exacerbate the non-
uniform distribution. When the population size is increased, there is more opportunity
for such initial seeds to be present.

The results we have presented seem less surprising when iterative population-based
algorithms are considered in relation toIterated Function Systemswhich, by defi-
nition, are finite sets of mappings of complete metric space or, symbolically,F =
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(X, f1, f2, ..., FM ), fm : X → X,m = 1, 2, ...,M . Depending on the properties of
functions that make them up, IFSs exhibit a variety of behaviours. According to the
collage theorem [51], for any given set/image there exists astrictly contractive IFS
whose attractor arbitrarily closely approximate this set/image. A linear IFS onRn has
a unique attractor located at the origin [52]. Any projective IFS has at most one attrac-
tor [53] but behaviour of such attractors appears to be more complicated than in the
case of affine IFSs as they might not depend continuously on parameters [53]. More-
over, there are examples of non-contractive projective IFSwith an attractor [53]. These
results point to a potentially fruitful direction for the analysis of algorithms through
studying the properties of their operators.

Finally, it is instructive to speculate on the existence of structural bias in combina-
torial optimization. Both the theoretical and practical investigations in this article are
pinned to the context of real-valued vector optimization. In the empirical tests, we have
observed structural bias in terms of the distribution of points in a continuous space, and
in theory we have related its emergence to dynamics of positional variance in this space
as a result of the operation of typical real-valued operators. So, at first sight, it is not
at all obvious that structural bias may occur in the combinatorial case. However, it
is trivial to see that itcould occur. For example, were we so inclined, we could pur-
posely design operators to favour certain regions of the space independently of fitness.
Imagine, say, a permutation space with an even number of objects, in which the only
operator in use was to swap an item with its neighbour two steps away; this search is
then confined to the cross-product of two subspaces, omitting most of the permutation
space. Also, despite the ’real-value’ focus of the theoretical argument, it is intuitively
reasonable to speculate that a similar argument, couched interms of suitable metrics,
may be meaningful for combinatorial spaces. For example, the perturbation effect of
a combinatorial operator on one or more points can be characterised as a distribution
of edit distances from those points. Structural bias in combinatorial search algorithms
might arise from the dynamics of the variance of this distribution in the context of other
aspects of the algorithm’s configuration.

References

[1] A. E. Eiben and J. E. Smith,Introduction to Evolutionary Computation. Berlin,
Germany: Springer-Verlag, 2003.
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