85 research outputs found

    Cellular Uptake and Nuclear Delivery of Recombinant Adenovirus Penton Base

    Get PDF
    AbstractAn Ad2 capsid component, the penton base, expressed as recombinant protein, was found to be capable of affecting the entire entry pathway of adenovirion in HeLa cells, i.e., cell attachment, endocytosis, vesicular escape, intracytoplasmic movement, and translocation through the nuclear pore complex. Data with pentamerization-defective mutants suggested that none of these successive steps depended upon penton base pentamer status, indicating that the peptide domains responsible for these functions were carried by the monomer. Observations performed with wild-type (WT) and an integrin-binding-site double-mutant (K288E340) suggested that the penton base could enter the cell via an alternative, RGD- and LDV-independent, pathway. Of three mutants that were found to be defective in nuclear addressing in insect cells, only one, W165H, was also altered in nuclear transport in HeLa cells. The other two, W119H and RRR547EQQ, showed a WT pattern of nuclear localization in HeLa cells, suggesting that the region including tryptophan-119 and the basic signal at position 547 did not act as a nuclear localization signal in the human cell context. The integrity of cellular structures and the cytoskeleton seemed to be required for the vectorial movement and nuclear import of WT penton base, as suggested by experiments using permeabilized HeLa cells, isolated nuclear membranes, and cytoskeleton-targeted drugs

    The inhibition of assembly of HIV-1 virus-like particles by 3-O-(3',3'-dimethylsuccinyl) betulinic acid (DSB) is counteracted by Vif and requires its Zinc-binding domain

    Get PDF
    International audienceBackground: DSB, the 3-O-(3',3'dimethylsuccinyl) derivative of betulinic acid, blocks the last step of protease-mediated processing of HIV-1 Gag precursor (Pr55Gag), which leads to immature, noninfectious virions. When administered to Pr55Gag-expressing insect cells (Sf9), DSB inhibits the assembly and budding of membrane-enveloped virus-like particles (VLP). In order to explore the possibility that viral factors could modulate the susceptibility to DSB of the VLP assembly process, several viral proteins were coexpressed individually with Pr55Gag in DSB-treated cells, and VLP yields assayed in the extracellular medium.Results: Wild-type Vif (Vifwt) restored the VLP production in DSB-treated cells to levels observed in control, untreated cells. DSB-counteracting effect was also observed with Vif mutants defective in encapsidation into VLP, suggesting that packaging and anti-DSB effect were separate functions in Vif. The anti-DSB effect was abolished for VifC133S and VifS116V, two mutants which lacked the zinc binding domain (ZBD) formed by the four H(108)C(114)C(133)H(139) coordinates with a Zn atom. Electron microscopic analysis of cells coexpressing Pr55Gag and Vifwt showed that a large proportion of VLP budded into cytoplasmic vesicles and were released from Sf9 cells by exocytosis. However, in the presence of mutant VifC133S or VifS116V, most of the VLP assembled and budded at the plasma membrane, as in control cells expressing Pr55Gag alone.Conclusion: The function of HIV-1 Vif protein which negated the DSB inhibition of VLP assembly was independent of its packaging capability, but depended on the integrity of ZBD. In the presence of Vifwt, but not with ZBD mutants VifC133S and VifS116V, VLP were redirected to a vesicular compartment and egressed via the exocytic pathway

    A dynamical gluon mass solution in a coupled system of the Schwinger-Dyson equations

    Full text link
    We study numerically the Schwinger-Dyson equations for the coupled system of gluon and ghost propagators in the Landau gauge and in the case of pure gauge QCD. We show that a dynamical mass for the gluon propagator arises as a solution while the ghost propagator develops an enhanced behavior in the infrared regime of QCD. Simple analytical expressions are proposed for the propagators, and the mass dependency on the ΛQCD\Lambda_{QCD} scale and its perturbative scaling are studied. We discuss the implications of our results for the infrared behavior of the coupling constant, which, according to fits for the propagators infrared behavior, seems to indicate that αs(q2)0\alpha_s (q^2) \to 0 as q20q^2 \to 0.Comment: 17 pages, 7 figures - Revised version to be consistent with erratum to appear in JHE

    Additional J/ΨJ/\Psi Suppression from High Density Effects

    Full text link
    At high energies the saturation effects associated to the high parton density should modify the behavior of the observables in proton-nucleus and nucleus-nucleus scattering. In this paper we investigate the saturation effects in the nuclear J/ΨJ/\Psi production and estimate the modifications in the energy dependence of the cross section as well as in the length of the nuclear medium. In particular, we calculate the ratio of J/ΨJ/\Psi to Drell-Yan cross sections and show that it is strongly modified if the high density effects are included. Moreover, our results are compared with the data from the NA50 Collaboration and predictions for the RHIC and LHC kinematic regions are presented. We predict an additional J/ΨJ/\Psi suppression associated to the high density effects.Comment: 13 pages, 5 figures, version to be published in Eur. Phys. J.

    Conformational changes in α7 acetylcholine receptors underlying allosteric modulation by divalent cations

    Get PDF
    Allosteric modulation of membrane receptors is a widespread mechanism by which endogenous and exogenous agents regulate receptor function. For example, several members of the nicotinic receptor family are modulated by physiological concentrations of extracellular calcium ions. In this paper, we examined conformational changes underlying this modulation and compare these with changes evoked by ACh. Two sets of residues in the α7 acetylcholine receptor extracellular domain were mutated to cysteine and analyzed by measuring the rates of modification by the thiol-specific reagent 2-aminoethylmethane thiosulfonate. Using Ba2+ as a surrogate for Ca2+, we found a divalent-dependent decrease the modification rates of cysteine substitutions at M37 and M40, residues at which rates were also slowed by ACh. In contrast, Ba2+ had no significant effect at N52C, a residue where ACh increased the rate of modification. Thus divalent modulators cause some but not all of the conformational effects elicited by agonist. Cysteine substitution of either of two glutamates (E44 or E172), thought to participate in the divalent cation binding site, caused a loss of allosteric modulation, yet Ba2+ still had a significant effect on modification rates of these residues. In addition, the effect of Ba2+ at these residues did not appear to be due to direct occlusion. Our data demonstrate that modulation by divalent cations involves substantial conformational changes in the receptor extracellular domain. Our evidence also suggests the modulation occurs via a binding site distinct from one which includes either (or both) of the conserved glutamates at E44 or E172

    Expansion of immunoglobulin-secreting cells and defects in B cell tolerance in Rag-dependent immunodeficiency

    Get PDF
    The contribution of B cells to the pathology of Omenn syndrome and leaky severe combined immunodeficiency (SCID) has not been previously investigated. We have studied a mut/mut mouse model of leaky SCID with a homozygous Rag1 S723C mutation that impairs, but does not abrogate, V(D)J recombination activity. In spite of a severe block at the pro–B cell stage and profound B cell lymphopenia, significant serum levels of immunoglobulin (Ig) G, IgM, IgA, and IgE and a high proportion of Ig-secreting cells were detected in mut/mut mice. Antibody responses to trinitrophenyl (TNP)-Ficoll and production of high-affinity antibodies to TNP–keyhole limpet hemocyanin were severely impaired, even after adoptive transfer of wild-type CD4+ T cells. Mut/mut mice produced high amounts of low-affinity self-reactive antibodies and showed significant lymphocytic infiltrates in peripheral tissues. Autoantibody production was associated with impaired receptor editing and increased serum B cell–activating factor (BAFF) concentrations. Autoantibodies and elevated BAFF levels were also identified in patients with Omenn syndrome and leaky SCID as a result of hypomorphic RAG mutations. These data indicate that the stochastic generation of an autoreactive B cell repertoire, which is associated with defects in central and peripheral checkpoints of B cell tolerance, is an important, previously unrecognized, aspect of immunodeficiencies associated with hypomorphic RAG mutations

    Nurses' perceptions of aids and obstacles to the provision of optimal end of life care in ICU

    Get PDF
    Contains fulltext : 172380.pdf (publisher's version ) (Open Access

    Quantification of HIV-based lentiviral vectors: influence of several cell type parameters on vector infectivity

    No full text
    International audienceA human immunodeficiency virus type (HIV-1)-based lentiviral vector pseudotyped with the vesicular stomatitis virus envelope glycoprotein and encoding the GFP reporter gene was used to evaluate different methods of lentiviral vector titration. GFP expression, viral DNA quantification and the efficiency of vector DNA integration were assayed after infection of conventional HIV-1-permissive cell lines and human primary adult fibroblasts with the vector. We found that vector titers based on GFP expression determined by flow cytometry may vary by more than 50-fold depending on the cell type and the promoter-cell combination used. Interestingly, we observed that the viral integration process in primary HDFa cells was significantly more efficient compared to that in SupT1 or 293T cells. We propose that determination of the amount of integrated viral DNA by quantitative PCR be used in combination with the reporter gene expression assay
    corecore