63 research outputs found
Landscape differences in the ecology of the Rufous Treecreeper Climacteris Rufa
Anthropogenic habitat modification is a significant threat to the conservation or global biodiversity. The fragmentation and alteration of woodland habitat has resulted in the substantial decline of many woodland bird species in the agricultural regions of southern Australia. The Rufous Treecreeper Climacteris rufaa, a once common woodland resident, has declined in abundance in the wheatbelt of Western Australia and appears to be sensitive to habitat fragmentation. The reasons for this are unclear because our knowledge of the species and the threats posed by fragmentation arc limited. In this study, I compared the social organisation, habitat selection, reproductive success, dispersal and population dynamics of two Rufous Treecreeper populations living in the Western Australian wheatbelt. The first population occupied a large (8,500 ha), relatively undisturbed and unfragmented landscape. The second occurred in an equivalent sized area that had been substantially modified by agriculture. I hypothesised that habitat fragmentation and alteration would adversely affect the viability of the population living in the agricultural landscape. In the unfragmented landscape, treecreepers lived in cooperatively breeding, territorial groups. A group usually comprised a primary (assumed to be breeding) male and female, and philopatric offspring (helpers) from previous breeding seasons. Helpers assisted in the feeding and caring of nestlings and there was a positive relationship between group size and reproductive output. Breeding groups often fanned interactive neighbourhoods whereby resident individuals from one territory would feed nestlings in adjacent territories. A total of 77.7% of 148 nesting attempts produced at least one fledgling. Annual productivity per breeding group (n = 90 group years) was 2.1 ± 0.18 fledglings. Fledgling and juvenile survival rates (0.76 ± 0.04 and 0.46 ± 0.03 respectively) were comparatively high, as was the annual survival rate of primary males (0.77 ± 0.06) and females (0.75 ± 0.05). A multi-scaled analysis of habitat use in the unfragmented landscape identified preferential habitat selection by the species at three spatial scales. At the landscape scale, treecreepers used Wandoo Eucalyptus wandoo woodland at a significantly higher rate than predicted by the availability of this woodland type. Territory selection was positively correlated with the density of hollow bearing logs and nest sites, and tree age. These structural characteristics were also positively correlated with reproductive success und survival in treecreepers, indicating that habitat structure may be a useful measure of territory quality. Nest sites (hollows) were preferentially used if they had a spout angle of ≥ 50° and an entrance size or 5-10 cm, but nest-site selection was not related to nest success. The ecological traits of the treecreeper population living in the agricultural landscape differed from the population in the unfragmented area in a number of ways. Habitat fragmentation in the agricultural landscape disrupted territory contiguity with adverse consequences for social interaction. Nest success and annual productivity were significantly lower in the agricultural landscape, although they varied between different categories of habitat remnants. Reproductive success was lowest in grazed remnants supporting comparatively high population densities. Landscape differences in success did not appear to be a result of a disparity in nest predation levels, but may be related to variation in food availability and habitat quality. The spatial structure and dynamics of the subdivided population in the agricultural landscape were consistent with certain aspects of metapopulation theory. Treecreepers lived in spatially discrete local populations that were unlikely to persist without immigration owing to low reproductive and survival rates. However, movement between habitat remnants appeared to be sufficient to rescue these local populations from extinction. Although declining in numbers during the study, the subdivided population in the agricultural landscape appeared to be fluctuating around equilibrium owing to immigration from outside the study area. The consequences of habitat fragmentation for the Rufous Treecreeper are complex and interactive. A reduction in habitat area and an increase in remnant isolation disrupts the social organisation of the species and results in small localised populations that are susceptible to extinction. Modification of the remaining vegetation may reduce habitat quality leading to poor reproductive success. In addition to increasing habitat area and maintaining landscape connectivity, future management of fragmented landscapes must focus on improving the quality of remnant vegetation by removing degrading process and ensuring the recruitment of endemic plant species
Ethical considerations in on-ground applications of the ecosystem services concept
The ecosystem services (ES) concept is one of the main avenues for conveying society's dependence on natural ecosystems. On-ground applications of the concept are now widespread and diverse and include its use as a communication tool, for policy guidance and priority setting, and for designing economic instruments for conservation. Each application raises ethical considerations beyond traditional controversies related to the monetary valuation of nature. We review ethical considerations across major on-ground applications and group them into the following categories: anthropocentric framing, economic metaphor, monetary valuation, commodification, sociocultural impact, changes in motivations, and equity implications. Different applications of the ES concept raise different suites of ethical issues, and we propose methods to address the issues most relevant to each application. We conclude that the ES concept should be considered as only one among various alternative approaches to valuing nature and that reliance on economic metaphors can exclude other motivations for protecting ecosystems
Opinion: Why Protect Nature? Rethinking Values and the Environment
A cornerstone of environmental policy is the debate over protecting nature for humans’ sake (instrumental values) or for nature’s (intrinsic values) (1). We propose that focusing only on instrumental or intrinsic values may fail to resonate with views on personal and collective well-being, or “what is right,” with regard to nature and the environment. Without complementary attention to other ways that value is expressed and realized by people, such a focus may inadvertently promote worldviews at odds with fair and desirable futures. It is time to engage seriously with a third class of values, one with diverse roots and current expressions: relational values. By doing so, we reframe the discussion about environmental protection, and open the door to new, potentially more productive policy approaches
A reference map of the human binary protein interactome.
Global insights into cellular organization and genome function require comprehensive understanding of the interactome networks that mediate genotype-phenotype relationships(1,2). Here we present a human 'all-by-all' reference interactome map of human binary protein interactions, or 'HuRI'. With approximately 53,000 protein-protein interactions, HuRI has approximately four times as many such interactions as there are high-quality curated interactions from small-scale studies. The integration of HuRI with genome(3), transcriptome(4) and proteome(5) data enables cellular function to be studied within most physiological or pathological cellular contexts. We demonstrate the utility of HuRI in identifying the specific subcellular roles of protein-protein interactions. Inferred tissue-specific networks reveal general principles for the formation of cellular context-specific functions and elucidate potential molecular mechanisms that might underlie tissue-specific phenotypes of Mendelian diseases. HuRI is a systematic proteome-wide reference that links genomic variation to phenotypic outcomes
Author Correction:Study of 300,486 individuals identifies 148 independent genetic loci influencing general cognitive function
Christina M. Lill, who contributed to analysis of data, was inadvertently omitted from the author list in the originally published version of this article. This has now been corrected in both the PDF and HTML versions of the article
Pan trap catches of pollinator insects vary with habitat
Coloured pan trapping is a simple and efficient method for collecting flying insects, yet there is still discussion over the most effective bowl colour to use for particular target groups (e.g. pollinator insects). The success of particular colours can vary across bioregions and habitats. Most published pan trap studies have been conducted in the northern hemisphere, and very few investigated the effects of habitat on pan trap catches. Our study is one of the first to (1) sample for potential pollinators in Australian mallee vegetation and almond orchards and (2) investigate whether habitat interacts with trap colour to influence pan trap catches. We sampled Hymenoptera and Diptera using yellow, white and blue pan traps in native mallee vegetation and two types of managed almond orchards (monoculture and plant-diverse) in the Murray Mallee bioregion of north-western Victoria, Australia. Yellow traps caught the most insects across all habitats, although catches in each colour trap varied with habitat. For all insect groups combined, blue traps caught more individuals in mallee habitats than in almond orchards. For native hymenopterans, yellow traps caught more individuals in plant-diverse orchards than in native sites, while blue traps caught more individuals in native sites. Our results highlight the importance of considering the habitat of individual pan trapping surveys, as no one trap colour is likely to be suitable for trapping target insects across all habitats
Spatial and temporal variation in pollinator community structure relative to a woodland-almond plantation edge
Agricultural landscape elements, such as field edges, are not always a barrier to insects but can influence their distribution and dispersal behaviour. The present study investigated spatial and temporal patterns in wild pollinator (fly, wasp and non-Apis bee) distribution across an edge between natural mallee woodland and monoculture almond plantations in southern Australia, during the critical almond flowering period. This is the first study of variation in pollinator community distribution on both sides of an edge between natural vegetation and flowering tree crop plantations. Species richness, diversity and evenness (SHE) analysis was also used to identify changes in pollinator community structure relative to the edge. It is shown that the spatial distribution and structure of pollinator communities can vary across a habitat edge with an abrupt temporal changes in resources. Our results suggest that the plantation edge did not prevent wild pollinators spilling over from woodlands, although vegetation homogeneity and phenological changes in resources most likely influenced the dispersal of pollinators into plantation interiors. The findings of the present study contribute to our knowledge of edge responses by insects in managed landscapes and could motivate growers to adopt ecological management practices in commercial plantations. Future studies of insects near farmland edges should include samples on both sides of the edge and should also consider the landscape context
- …