91 research outputs found

    Properties of non-structural protein 1 of Semliki Forest virus and its interference with virus replication

    Get PDF
    Semliki Forest virus (SFV) non-structural protein 1 (nsP1) is a major component of the virus replicase complex. It has previously been studied in cells infected with virus or using transient or stable expression systems. To extend these studies, tetracycline-inducible stable cell lines expressing SFV nsP1 or its palmitoylation-negative mutant (nsP16D) were constructed. The levels of protein expression and the subcellular localization of nsP1 in induced cells were similar to those in virus-infected cells. The nsP1 expressed by stable, inducible cell lines or by SFV-infected HEK293 T-REx cells was a stable protein with a half-life of approximately 5 h. In contrast to SFV infection, induction of nsP1 expression had no detectable effect on cellular transcription, translation or viability. Induction of expression of nsP1 or nsP16D interfered with multiplication of SFV, typically resulting in a 5–10-fold reduction in virus yields. This reduction was not due to a decrease in the number of infected cells, indicating that nsP1 expression does not block virus entry or initiation of replication. Expression of nsP1 interfered with virus genomic RNA synthesis and delayed accumulation of viral subgenomic RNA translation products. Expression of nsP1 with a mutation in the palmitoylation site reduced synthesis of genomic and subgenomic RNAs and their products of translation, and this effect did not resolve with time. These results are in agreement with data published previously, suggesting a role for nsP1 in genomic RNA synthesis

    Mutations in the nuclear localization signal of nsP2 influencing RNA synthesis, protein expression and cytotoxicity of Semliki Forest virus

    Get PDF
    The cytotoxicity of Semliki Forest virus (SFV) infection is caused partly by the non-structural protein nsP2, an essential component of the SFV replicase complex. Due to the presence of a nuclear localization signal (NLS), nsP2 also localizes in the nucleus of infected cells. The present study analysed recombinant SFV replicons and genomes with various deletions or substitutions in the NLS, or with a proline-to-glycine mutation at position 718 of nsP2 (P718G). Deletion of one or two arginine residues from the NLS or substitution of two of the arginines with aspartic acid resulted in a virus with a temperature-sensitive phenotype, and substitution of all three arginines was lethal. Thus, most of the introduced mutations severely affected nsP2 functioning in viral replication; in addition, they inhibited the ability of SFV to induce translational shut-off and kill infected cells. SFV replicons with a P718G mutation or replacement of the NLS residues 648RRR650 with RDD were found to be the least cytotoxic. Corresponding replicons expressed non-structural proteins at normal levels, but had severely reduced genomic RNA synthesis and were virtually unable to replicate and transcribe co-electroporated helper RNA. The non-cytotoxic phenotype was maintained in SFV full-length genomes harbouring the corresponding mutations; however, during a single cycle of cell culture, these were converted to a cytotoxic phenotype, probably due to the accumulation of compensatory mutations

    Proteomic Analysis of Chikungunya Virus Infected Microgial Cells

    Get PDF
    Chikungunya virus (CHIKV) is a recently re-emerged public health problem in many countries bordering the Indian Ocean and elsewhere. Chikungunya fever is a relatively self limiting febrile disease, but the consequences of chikungunya fever can include a long lasting, debilitating arthralgia, and occasional neurological involvement has been reported. Macrophages have been implicated as an important cell target of CHIKV with regards to both their role as an immune mediator, as well evidence pointing to long term viral persistence in these cells. Microglial cells are the resident brain macrophages, and so this study sought to define the proteomic changes in a human microglial cell line (CHME-5) in response to CHIKV infection. GeLC-MS/MS analysis of CHIKV infected and mock infected cells identified some 1455 individual proteins, of which 90 proteins, belonging to diverse cellular pathways, were significantly down regulated at a significance level of p<0.01. Analysis of the protein profile in response to infection did not support a global inhibition of either normal or IRES-mediated translation, but was consistent with the targeting of specific cellular pathways including those regulating innate antiviral mechanisms

    ViralORFeome: an integrated database to generate a versatile collection of viral ORFs

    Get PDF
    Large collections of protein-encoding open reading frames (ORFs) established in a versatile recombination-based cloning system have been instrumental to study protein functions in high-throughput assays. Such ‘ORFeome’ resources have been developed for several organisms but in virology, plasmid collections covering a significant fraction of the virosphere are still needed. In this perspective, we present ViralORFeome 1.0 (http://www.viralorfeome.com), an open-access database and management system that provides an integrated set of bioinformatic tools to clone viral ORFs in the Gateway® system. ViralORFeome provides a convenient interface to navigate through virus genome sequences, to design ORF-specific cloning primers, to validate the sequence of generated constructs and to browse established collections of virus ORFs. Most importantly, ViralORFeome has been designed to manage all possible variants or mutants of a given ORF so that the cloning procedure can be applied to any emerging virus strain. A subset of plasmid constructs generated with ViralORFeome platform has been tested with success for heterologous protein expression in different expression systems at proteome scale. ViralORFeome should provide our community with a framework to establish a large collection of virus ORF clones, an instrumental resource to determine functions, activities and binding partners of viral proteins

    Advances in dissecting mosquito innate immune responses to arbovirus infection

    Get PDF
    Arthropod-borne viruses – arboviruses – are a significant threat to public health. Whilst there is considerable knowledge about arbovirus interactions with vertebrate immunity, relatively little is known about how vectors such as mosquitoes control arbovirus infections. In this review, we discuss novel findings in the field of mosquito antiviral responses to arboviruses, in particular RNA interference, the up-and-coming field of general immune-signalling pathways, and cell death/apoptosis

    Development of infectious cDNA clones of Salmonid alphavirus subtype 3

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Salmonid alphavirus (SAV) is a widespread pathogen in European aquaculture of salmonid fish. Distinct viral subtypes have been suggested based on sequence comparisons and some of these have different geographical distributions. In Norway, only SAV subtype 3 have so far been identified. Little is known about viral mechanisms important for pathogenesis and transmission. Tools for detailed exploration of SAV genomes are therefore needed.</p> <p>Results</p> <p>Infectious cDNA clones in which a genome of subtype 3 SAV is under the control of a CMV promoter were constructed. The clones were designed to express proteins that are putatively identical to those previously reported for the SAVH20/03 strain. A polyclonal antiserum was raised against a part of the E2 glycoprotein in order to detect expression of the subgenomic open reading frame (ORF) encoding structural viral proteins. Transfection of the cDNA clone revealed the expression of the E2 protein by IFAT, and in serial passages of the supernatant the presence of infectious recombinant virus was confirmed through RT-PCR, IFAT and the development of a cytopathic effect similar to that seen during infection with wild type SAV. Confirmation that the recovered virus originated from the infectious plasmid was done by sequence identification of an introduced genetic tag. The recombinant virus was infectious also when an additional ORF encoding an EGFP reporter gene under the control of a second subgenomic alphavirus promoter was added. Finally, we used the system to study the effect of selected point mutations on infectivity in Chinook salmon embryo cells. While introduced mutations in nsP2<sub>197</sub>, nsP3<sub>263 </sub>and nsP3<sub>323 </sub>severely reduced infectivity, a serine to proline mutation in E2<sub>206 </sub>appeared to enhance the virus titer production.</p> <p>Conclusion</p> <p>We have constructed infectious clones for SAV based on a subtype 3 genome. The clones may serve as a platform for further functional studies.</p

    High-Resolution Functional Mapping of the Venezuelan Equine Encephalitis Virus Genome by Insertional Mutagenesis and Massively Parallel Sequencing

    Get PDF
    We have developed a high-resolution genomic mapping technique that combines transposon-mediated insertional mutagenesis with either capillary electrophoresis or massively parallel sequencing to identify functionally important regions of the Venezuelan equine encephalitis virus (VEEV) genome. We initially used a capillary electrophoresis method to gain insight into the role of the VEEV nonstructural protein 3 (nsP3) in viral replication. We identified several regions in nsP3 that are intolerant to small (15 bp) insertions, and thus are presumably functionally important. We also identified nine separate regions in nsP3 that will tolerate small insertions at low temperatures (30°C), but not at higher temperatures (37°C, and 40°C). Because we found this method to be extremely effective at identifying temperature sensitive (ts) mutations, but limited by capillary electrophoresis capacity, we replaced the capillary electrophoresis with massively parallel sequencing and used the improved method to generate a functional map of the entire VEEV genome. We identified several hundred potential ts mutations throughout the genome and we validated several of the mutations in nsP2, nsP3, E3, E2, E1 and capsid using single-cycle growth curve experiments with virus generated through reverse genetics. We further demonstrated that two of the nsP3 ts mutants were attenuated for virulence in mice but could elicit protective immunity against challenge with wild-type VEEV. The recombinant ts mutants will be valuable tools for further studies of VEEV replication and virulence. Moreover, the method that we developed is applicable for generating such tools for any virus with a robust reverse genetics system

    Genetic and Anatomic Determinants of Enzootic Venezuelan Equine Encephalitis Virus Infection of Culex (Melanoconion) taeniopus

    Get PDF
    Venezuelan equine encephalitis (VEE) is a re-emerging, mosquito-borne viral disease with the potential to cause fatal encephalitis in both humans and equids. Recently, detection of endemic VEE caused by enzootic strains has escalated in Mexico, Peru, Bolivia, Colombia and Ecuador, emphasizing the importance of understanding the enzootic transmission cycle of the etiologic agent, VEE virus (VEEV). The majority of work examining the viral determinants of vector infection has been performed in the epizootic mosquito vector, Aedes (Ochlerotatus) taeniorhynchus. Based on the fundamental differences between the epizootic and enzootic cycles, we hypothesized that the virus-vector interaction of the enzootic cycle is fundamentally different from that of the epizootic model. We therefore examined the determinants for VEEV IE infection in the enzootic vector, Culex (Melanoconion) taeniopus, and determined the number and susceptibility of midgut epithelial cells initially infected and their distribution compared to the epizootic virus-vector interaction. Using chimeric viruses, we demonstrated that the determinants of infection for the enzootic vector are different than those observed for the epizootic vector. Similarly, we showed that, unlike A. taeniorhynchus infection with subtype IC VEEV, C. taeniopus does not have a limited subpopulation of midgut cells susceptible to subtype IE VEEV. These findings support the hypothesis that the enzootic VEEV relationship with C. taeniopus differs from the epizootic virus-vector interaction in that the determinants appear to be found in both the nonstructural and structural regions, and initial midgut infection is not limited to a small population of susceptible cells

    Random Insertion Mutagenesis of Sindbis Virus Nonstructural Protein 2 and Selection of Variants Incapable of Downregulating Cellular Transcription▿ †

    No full text
    Sindbis virus nonstructural protein 2 (SINV nsP2) is an important determinant of virus pathogenesis and downregulation of virus-induced cell response. This protein efficiently inhibits transcription of cellular messenger and ribosomal RNAs and, thus, is capable of inhibiting the activation of genes whose products are involved in development of the antiviral response. Alphavirus nsP2 has a number of predicted functional domains, some of which were confirmed by crystal structure. Our current study demonstrated that none of the putative or known structural domains alone or their combinations was capable of functioning in transcription inhibition. By using random, transposon-mediated mutagenesis, we generated a library of SINV nsP2 variants having short peptide insertions and selected those that lost the ability to inhibit cellular transcription and cause a cytopathic effect. Insertions abrogating the nuclear functions of the protein were found in the three different functional nsP2 domains. Some of the mutated protein variants retained the enzymatic functions required for replication of the viral genome. Such viruses were capable of efficient, productive replication in cells defective in interferon (IFN) signaling but were attenuated and incapable of spreading in cells with an intact type I IFN response. These results revealed new information about the structure of SINV nsP2 and interaction of its domains

    Sindbis Virus Nonstructural Protein nsP2 Is Cytotoxic and Inhibits Cellular Transcription

    No full text
    Replication of alphaviruses in vertebrate cells strongly affects cell physiology and ultimately leads to development of a cytopathic effect (CPE) and cell death. Sindbis virus (SIN) replication causes major changes in cellular macromolecular synthesis, in which the strong downregulation of transcription of cellular mRNAs and rRNAs plays a critical role. SIN nonstructural protein nsP2 was previously proposed as one of the main regulators of virus-host cell interactions, because point mutations in the carboxy-terminal part of nsP2 could make SIN and other alphaviruses and replicons less cytopathic and capable of persisting in some vertebrate cell lines. These mutants were incapable of inhibiting transcription and downregulating a viral stress-induced cell response. In the present work, we demonstrate that (i) SIN nsP2 is critically involved in CPE development, not only during the replication of SIN-specific RNAs, but also when this protein is expressed alone from different expression cassettes; (ii) the cytotoxic effect of SIN nsP2 appears to be at least partially determined by its ability to cause transcriptional shutoff; (iii) these functions of SIN nsP2 are determined by the integrity of the carboxy-terminal peptide of this protein located outside its helicase and protease domains, rather than by its protease activity; and (iv) the cytotoxic activity of SIN nsP2 depends on the presence of this protein in a free form, and alterations in P123 processing abolish the ability of nsP2 to cause CPE
    corecore