19 research outputs found

    Prevalence of RPGR-Mediated Retinal Dystrophy in an Unselected Cohort of Over 5000 Patients

    Get PDF
    Purpose: Comprehensive genetic testing for inherited retinal dystrophy (IRD) is challenged by difficult-to-sequence genomic regions, which are often mutational hotspots, such as RPGR ORF15. The purpose of this study was to evaluate the diagnostic contribution of RPGR variants in an unselected IRD patient cohort referred for testing in a clinical diagnostic laboratory. Methods: A total of 5201 consecutive patients were analyzed with a clinically validated next-generation sequencing (NGS)-based assay, including the difficult-to-sequence RPGR ORF15 region. Copy number variant (CNV) detection from NGS data was included. Variant interpretation was performed per the American College of Medical Genetics and Genomics guidelines. Results: A confirmed molecular diagnosis in RPGR was found in 4.5% of patients, 24.0% of whom were females. Variants in ORF15 accounted for 74% of the diagnoses; 29% of the diagnostic variants were in the most difficult-to-sequence central region of ORF15 (c.2470-3230). Truncating variants made up the majority (91%) of the diagnostic variants. CNVs explained 2% of the diagnostic cases, of which 80% were one- or two-exon deletions outside of ORF15. Conclusions: Our findings indicate that high-throughput, clinically validated NGS-based testing covering the difficult-to-sequence region of ORF15, in combination with high-resolution CNV detection, can help to maximize the diagnostic yield for patients with IRD. Translational Relevance: These results demonstrate an accurate and scalable method for the detection of RPGR-related variants, including the difficult-to-sequence ORF15 hotspot, which is relevant given current and emerging therapeutic opportunities.Peer reviewe

    Diagnostic utility of next-generation sequencing-based panel testing in 543 patients with suspected skeletal dysplasia

    No full text
    Correction: Volume17, Issue1 Article Number 59 DOI: 10.1186/s13023-022-02242-8 Published FEB 17 2022Background Skeletal dysplasia is typically diagnosed using a combination of radiographic imaging, clinical examinations, and molecular testing. Identifying a molecular diagnosis for an individual with a skeletal dysplasia can lead to improved clinical care, guide future medical management and treatment, and inform assessment of risk for familial recurrence. The molecular diagnostic utility of multi-gene panel testing using next-generation sequencing (NGS) has not yet been characterized for an unselected population of individuals with suspected skeletal dysplasia. In this study, we retrospectively reviewed patient reports to assess the diagnostic yield, reported variant characteristics, impact of copy number variation, and performance in prenatal diagnostics of panel tests for variants in genes associated with skeletal dysplasia and growth disorders. Results Clinical reports of consecutive patients with a clinical indication of suspected skeletal dysplasia who underwent panel testing were examined. The 543 patients included in the study submitted samples for diagnostic genetic testing with an indication of suspected skeletal dysplasia or growth disorder and received one of three nested panel tests. A molecular diagnosis was established in 42.0% of patients (n = 228/543). Diagnostic variants were identified in 71 genes, nearly half of which (n = 35, 49.3%) contributed uniquely to a molecular diagnosis for a single patient in this cohort. Diagnostic yield was significantly higher among fetal samples (58.0%, n = 51/88) than postnatal samples (38.9%, n = 177/455; z = 3.32, p < 0.0009). Diagnostic variants in fetal cases were identified across 18 genes. Thirteen diagnostic CNVs were reported, representing 5.7% of diagnostic findings and ranging in size from 241-bp to whole chromosome aneuploidy. Additionally, 11.4% (36/315) of non-diagnostic patient reports had suspicious variants of unknown significance (VUS), in which additional family studies that provide segregation data and/or functional characterization may result in reclassification to likely pathogenic. Conclusions These findings demonstrate the utility of panel testing for individuals with a suspected skeletal dysplasia or growth disorder, with a particularly high diagnostic yield seen in prenatal cases. Pursuing comprehensive panel testing with high-resolution CNV analysis can provide a diagnostic benefit, given the considerable phenotype overlap amongst skeletal dysplasia conditions.Peer reviewe
    corecore