269 research outputs found

    Clinical Comparison of the Auditory Steady-State Response with the Click Auditory Brainstem Response in Infants

    Get PDF
    ObjectivesOur goal was to determine the effectiveness of using the auditory steady state response (ASSR) as a measure of hearing thresholds in infants who are suspected of having significant hearing loss, as compared with using the click-auditory brainstem response (C-ABR).MethodsWe retrospectively analyzed the audiologic profiles of 76 infants (46 boys and 30 girls, a total of 151 ears) who ranged in age from 1 to 12 months (average age: 5.7 months). The auditory evaluations in 76 infants who were suspected of having hearing loss were done via the C-ABR and ASSR. In addition, for reference, the mean ASSR thresholds were compared to those of 39 ears of infants and 39 ears of adults with normal hearing at 0.5, 1, 2, and 4 kHz.ResultsThe highest correlation between the C-ABR and ASSR thresholds was observed at an average of 2-4 kHz (r=0.94). On comparison between the hearing of infants and adults at 0.5, 1, 2, and 4 kHz, the mean ASSR threshold in infants was 12, 7, 8, and 7 dB higher, respectively, than that in adults.ConclusionASSR testing may provide additional audiometric information for accurately predicting the hearing sensitivity, and this is essential for the management of infants with severe to profound hearing loss

    Stochastic Resonance Modulates Neural Synchronization within and between Cortical Sources

    Get PDF
    Neural synchronization is a mechanism whereby functionally specific brain regions establish transient networks for perception, cognition, and action. Direct addition of weak noise (fast random fluctuations) to various neural systems enhances synchronization through the mechanism of stochastic resonance (SR). Moreover, SR also occurs in human perception, cognition, and action. Perception, cognition, and action are closely correlated with, and may depend upon, synchronized oscillations within specialized brain networks. We tested the hypothesis that SR-mediated neural synchronization occurs within and between functionally relevant brain areas and thus could be responsible for behavioral SR. We measured the 40-Hz transient response of the human auditory cortex to brief pure tones. This response arises when the ongoing, random-phase, 40-Hz activity of a group of tuned neurons in the auditory cortex becomes synchronized in response to the onset of an above-threshold sound at its “preferred” frequency. We presented a stream of near-threshold standard sounds in various levels of added broadband noise and measured subjects' 40-Hz response to the standards in a deviant-detection paradigm using high-density EEG. We used independent component analysis and dipole fitting to locate neural sources of the 40-Hz response in bilateral auditory cortex, left posterior cingulate cortex and left superior frontal gyrus. We found that added noise enhanced the 40-Hz response in all these areas. Moreover, added noise also increased the synchronization between these regions in alpha and gamma frequency bands both during and after the 40-Hz response. Our results demonstrate neural SR in several functionally specific brain regions, including areas not traditionally thought to contribute to the auditory 40-Hz transient response. In addition, we demonstrated SR in the synchronization between these brain regions. Thus, both intra- and inter-regional synchronization of neural activity are facilitated by the addition of moderate amounts of random noise. Because the noise levels in the brain fluctuate with arousal system activity, particularly across sleep-wake cycles, optimal neural noise levels, and thus SR, could be involved in optimizing the formation of task-relevant brain networks at several scales under normal conditions

    Auditory event-related potentials

    Get PDF
    Auditory event related potentials are electric potentials (AERP, AEP) and magnetic fields (AEF) generated by the synchronous activity of large neural populations in the brain, which are time-locked to some actual or expected sound event

    Auditory Brain Stem Evoked Potentials: Laboratory Exercises and Clinical Manual

    No full text

    Baby waves and hearing aids

    No full text

    Fitting Infant Hearing Aids

    No full text

    Low-Frequency Hearing and the Auditory Brainstem Response

    No full text
    • …
    corecore